• 제목/요약/키워드: pose recognition

검색결과 278건 처리시간 0.033초

거리영상 기반 동작인식 기술동향 (Technology Trends of Range Image based Gesture Recognition)

  • 장주용;류문욱;박순찬
    • 전자통신동향분석
    • /
    • 제29권1호
    • /
    • pp.11-20
    • /
    • 2014
  • 동작인식(gesture recognition) 기술은 입력 영상으로부터 영상에 포함된 사람들의 동작을 인식하는 기술로써 영상감시(visual surveillance), 사람-컴퓨터 상호작용(human-computer interaction), 지능로봇(intelligence robot) 등 다양한 적용분야를 가진다. 특히 최근에는 저비용의 거리 센서(range sensor) 및 효율적인 3차원 자세 추정(3D pose estimation)기술의 등장으로 동작인식은 기존의 어려움들을 극복하고 다양한 산업분야에 적용이 가능할 정도로 발전을 거듭하고 있다. 본고에서는 그러한 거리영상(range image) 기반의 동작인식 기술에 대한 최신 연구동향을 살펴본다.

  • PDF

로봇 손의 물체 인식을 위한 최적 접촉포즈 결정 알고리즘 (Determination of an Optimal Contact Pose for Object Recognition Using a Robot Hand)

  • 김종익;한헌수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.448-451
    • /
    • 1999
  • In this paper, we propose a new object representation method and matching algorithm for object recognition using a 3-fingered robot hand. Each finger tip can measure normal vector and shapes of a contacting surface. Object is represented by the inter-surface description table where the features of a surface are described in the diagonal and the relations between two surfaces are in the upper diagonal. Based on this table, a fast and the efficient matching algorithm has been proposed. This algorithm can be applied to natural quadric objects.

  • PDF

비강압적 홍채 인식을 위한 전 방향 카메라에서의 다각도 얼굴 검출 (Multi-views face detection in Omni-directional camera for non-intrusive iris recognition)

  • 이현수;배광혁;김재희;박강령
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 컴퓨터소사이어티 추계학술대회논문집
    • /
    • pp.115-118
    • /
    • 2003
  • This paper describes a system of detecting multi-views faces and estimating their face poses in an omni-directional camera environment for non-intrusive iris recognition. The paper is divided into two parts; First, moving region is identified by using difference-image information. Then this region is analyzed with face-color information to find the face candidate region. Second part is applying PCA (Principal Component Analysis) to detect multi-view faces, to estimate face pose.

  • PDF

손동작 인식 기반 Virtual Fitting 개발 (Virtual Fitting Development Based on Hand Gesture Recognition)

  • 김승연;유민지;조하정;정승원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.596-598
    • /
    • 2019
  • 손동작 인식을 기반으로 한 Virtual fitting 시스템은 Kinect Sensor 를 사용하여 자연스러운 Fitting 을 구현할 수 있다. Kinect Sensor 를 이용한 Pose estimation, Gesture recognition, Virtual fitting 을 구현함으로써 가상으로 의복을 착용하는 소프트웨어를 소개한다.

Global Feature Extraction and Recognition from Matrices of Gabor Feature Faces

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • 제9권2호
    • /
    • pp.207-211
    • /
    • 2011
  • This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.

얼굴 표면의 형태정보를 이용한 3차원 얼굴인식 (3D face recognition based on facial surface information)

  • 이동주;신형철;손광훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.423-424
    • /
    • 2006
  • This paper describes a 3D face recognition using different devices for 3D faces and input faces which include several different pose. Before the recognition stage, through the EC-SVD, all data have to be preprocessed and normalized. At recognition stage, we propose the multi-point signature method for measuring facial surface information. And we use the root mean square error for matching. From the experiment results, we have 92.5% recognition rate.

  • PDF

얼굴인식을 위한 다중입력 CNN의 기본 구현 (Basic Implementation of Multi Input CNN for Face Recognition)

  • Cheema, Usman;Moon, Seungbin
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.1002-1003
    • /
    • 2019
  • Face recognition is an extensively researched area of computer vision. Visible, infrared, thermal, and 3D modalities have been used against various challenges of face recognition such as illumination, pose, expression, partial information, and disguise. In this paper we present a multi-modal approach to face recognition using convolutional neural networks. We use visible and thermal face images as two separate inputs to a multi-input deep learning network for face recognition. The experiments are performed on IRIS visible and thermal face database and high face verification rates are achieved.

비전 AI의 객체 인식에 배경이 미치는 영향 (The Effect of Background on Object Recognition of Vision AI )

  • 왕인국;유정호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.127-128
    • /
    • 2023
  • The construction industry is increasingly adopting vision AI technologies to improve efficiency and safety management. However, the complex and dynamic nature of construction sites can pose challenges to the accuracy of vision AI models trained on datasets that do not consider the background. This study investigates the effect of background on object recognition for vision AI in construction sites by constructing a learning dataset and a test dataset with varying backgrounds. Frame scaffolding was chosen as the object of recognition due to its wide use, potential safety hazards, and difficulty in recognition. The experimental results showed that considering the background during model training significantly improved the accuracy of object recognition.

  • PDF

아웃페인팅 기반 반려동물 자세 추정에 관한 예비 연구 (A Pilot Study on Outpainting-powered Pet Pose Estimation)

  • 이규빈;이영찬;유원상
    • 융합신호처리학회논문지
    • /
    • 제24권1호
    • /
    • pp.69-75
    • /
    • 2023
  • 최근 동물 행동 분석 및 건강관리 분야를 중심으로 딥러닝 기반 동물 자세 추정 기법에 대한 관심이 높아지고 있다. 그러나 기존 동물 자세 추정 기법은 영상에서 신체 부위가 가려지거나 존재하지 않을 경우 좋은 성능을 보이지 않는다. 특히 꼬리나 귀가 가려진 경우, 반려견의 행동 및 감정 분석의 성능에도 심각한 영향을 미친다. 본 논문에서는 이러한 다루기 힘든 문제를 해결하기 위해, 이미지 아웃페인팅 네트워크를 자세 추정 네트워크에 연결하여 이미지 외부에 존재하는 반려견의 신체를 복원한 확장된 이미지를 생성하여 반려견의 자세를 추정하는 단순하면서도 새로운 접근방법을 제안하였고, 제안된 방법의 실현가능성을 검토하는 예비 연구를 수행하였다. 이미지 아웃페인팅 모델로는 CE-GAN과 트랜스포머 기반의 BAT-Fill을 사용하였고, 자세 추정 모델로는 SimpleBaseline을 사용하였다. 실험 결과, 크롭된 입력 이미지에서 반려견의 자세를 추정하였을 때보다, BAT-Fill을 사용하여 아웃페인팅된 확장 이미지에서 반려견의 자세를 추정하였을 때 자세 추정의 성능이 향상되었다.

이미지 인식률 개선을 위한 CNN 기반 이미지 회전 보정 알고리즘 (CNN-based Image Rotation Correction Algorithm to Improve Image Recognition Rate)

  • 이동구;선영규;김수현;심이삭;이계산;송명남;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.225-229
    • /
    • 2020
  • 이미지 인식 및 영상처리, 컴퓨터 비전 등의 분야에서 합성곱 인공신경망 (Convolutional Neural Network, CNN)은 다양하게 응용되고 탁월한 성능을 내고 있다. 본 논문에서는 CNN을 활용한 이미지 인식 시스템에서 인식률을 저하시키는 요인 중 하나인 이미지의 회전에 대한 해결책으로써 CNN 기반 이미지 회전 보정 알고리즘을 제안한다. 본 논문에서는 Leeds Sports Pose 데이터셋을 활용하여 이미지를 임의의 각도만큼 회전시킨 학습데이터로 인공지능 모델을 학습시켜 출력으로 회전된 각도를 추정하도록 실험을 진행하였다. 학습된 인공지능 모델을 100장의 테스트 데이터 이미지로 실험하여 mean absolute error (MAE) 성능지표를 기준으로 4.5951의 값을 얻었다.