• 제목/요약/키워드: pose estimation

검색결과 388건 처리시간 0.025초

포즈 추정 기반 포즈변화에 강인한 얼굴인식 시스템 설계 : PCA와 RBFNNs 패턴분류기를 이용한 인식성능 비교연구 (Design of Robust Face Recognition System to Pose Variations Based on Pose Estimation : The Comparative Study on the Recognition Performance Using PCA and RBFNNs)

  • 김봉연;김진율;오성권
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1347-1355
    • /
    • 2015
  • In this study, we compare the recognition performance using PCA and RBFNNs for introducing robust face recognition system to pose variations based on pose estimation. proposed face recognition system uses Honda/UCSD database for comparing recognition performance. Honda/UCSD database consists of 20 people, with 5 poses per person for a total of 500 face images. Extracted image consists of 5 poses using Multiple-Space PCA and each pose is performed by using (2D)2PCA for performing pose classification. Linear polynomial function is used as connection weight of RBFNNs Pattern Classifier and parameter coefficient is set by using Particle Swarm Optimization for model optimization. Proposed (2D)2PCA-based face pose classification performs recognition performance with PCA, (2D)2PCA and RBFNNs.

모바일 로봇을 위한 학습 기반 관성-바퀴 오도메트리 (Learning-based Inertial-wheel Odometry for a Mobile Robot)

  • 김명수;장근우;박재흥
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.427-435
    • /
    • 2023
  • This paper proposes a method of estimating the pose of a mobile robot by using a learning model. When estimating the pose of a mobile robot, wheel encoder and inertial measurement unit (IMU) data are generally utilized. However, depending on the condition of the ground surface, slip occurs due to interaction between the wheel and the floor. In this case, it is hard to predict pose accurately by using only encoder and IMU. Thus, in order to reduce pose error even in such conditions, this paper introduces a pose estimation method based on a learning model using data of the wheel encoder and IMU. As the learning model, long short-term memory (LSTM) network is adopted. The inputs to LSTM are velocity and acceleration data from the wheel encoder and IMU. Outputs from network are corrected linear and angular velocity. Estimated pose is calculated through numerically integrating output velocities. Dataset used as ground truth of learning model is collected in various ground conditions. Experimental results demonstrate that proposed learning model has higher accuracy of pose estimation than extended Kalman filter (EKF) and other learning models using the same data under various ground conditions.

영상기반 편대비행을 위한 선도기 자세예측 알고리즘 (Pose Estimation of Leader Aircraft for Vision-based Formation Flight)

  • 허진우;김정호;한동인;이대우;조겸래;허기봉
    • 한국항공우주학회지
    • /
    • 제41권7호
    • /
    • pp.532-538
    • /
    • 2013
  • 본 논문은 편대비헹에서 영상만을 이용하여 선도기의 자세를 예측 하는 알고리즘 개발에 대해 논하고 있다. X-PLANE 시뮬레이터를 이용하여 획득한 영상에 SURF(Speed Up Robust Features)알고리즘을 이용하여 특징점을 추출 하였다. 그리고 자세예측 방법은 POSIT(Pose from Orthography and Scaling with Iteration) 알고리즘을 사용하였다. 결론적으로 우리는 영상만을 이용한 자세추정법이 $1.1{\sim}1.76^{\circ}$의 작은 추정오차 결과를 나타냄을 확인할 수 있었다.

Enhanced Sign Language Transcription System via Hand Tracking and Pose Estimation

  • Kim, Jung-Ho;Kim, Najoung;Park, Hancheol;Park, Jong C.
    • Journal of Computing Science and Engineering
    • /
    • 제10권3호
    • /
    • pp.95-101
    • /
    • 2016
  • In this study, we propose a new system for constructing parallel corpora for sign languages, which are generally under-resourced in comparison to spoken languages. In order to achieve scalability and accessibility regarding data collection and corpus construction, our system utilizes deep learning-based techniques and predicts depth information to perform pose estimation on hand information obtainable from video recordings by a single RGB camera. These estimated poses are then transcribed into expressions in SignWriting. We evaluate the accuracy of hand tracking and hand pose estimation modules of our system quantitatively, using the American Sign Language Image Dataset and the American Sign Language Lexicon Video Dataset. The evaluation results show that our transcription system has a high potential to be successfully employed in constructing a sizable sign language corpus using various types of video resources.

A Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

  • Ragab, Mohammad Ehab;Elkabbany, Ghada Farouk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권11호
    • /
    • pp.4103-4117
    • /
    • 2014
  • Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.

데이터 증강을 통한 마스크 착용 얼굴 이미지에 강인한 얼굴 자세추정 (Robust Head Pose Estimation for Masked Face Image via Data Augmentation)

  • 한경탁;홍성은
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.944-947
    • /
    • 2022
  • 최근 코로나바이러스로 인한 마스크 착용이 급증함에 따라 마스크 착용에 대응할 수 있는 기술의 중요성이 증가하고 있다. 얼굴 자세 추정 분야는 운전자 주의, 얼굴 정면화, 시선 감지 등의 다양한 활용성에도 불구하고 마스크 착용에 따른 성능 저하 문제를 해결할 수 있는 연구가 거의 수행되지 않았다. 본 논문은 마스크 착용 유무에 따른 얼굴 자세 추정의 성능 저하에 대한 분석을 토대로, 마스크가 없는 얼굴 이미지의 크기 및 자세를 분석하여 마스크 이미지를 합성할 수 있는 데이터 증강 기법을 제안한다. 제안하는 얼굴에 특화된 증강 기법을 활용한 학습은 마스크 착용 여부와 관계없이 얼굴 자세 추정 벤치마크 데이터 세트인 BIWI에서 강인한 성능을 보이며, 특정 모델에 국한되지 않기 때문에 다양한 얼굴 자세 추정 모델에 적용될 수 있다.

LH-FAS v2: 머리 자세 추정 기반 경량 얼굴 위조 방지 기술 (LH-FAS v2: Head Pose Estimation-Based Lightweight Face Anti-Spoofing)

  • 허현범;양혜리;정성욱;이경재
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.309-316
    • /
    • 2024
  • 얼굴 인식 기술은 다양한 분야에서 활용되고 있지만, 이는 사진 스푸핑과 같은 위조 공격에 취약하다는 문제를 가지고 있다. 이를 극복하기 위한 여러 연구가 진행되고 있지만, 대부분은 멀티모달 카메라와 같은 특별한 장비를 장착하거나 고성능 환경에서 동작하는 것을 전제로 하고 있다. 본 연구는 얼굴 인식 위조 공격 문제를 해결하기 위해, 특별한 장비 없이 일반적인 웹캠에서 동작할 수 있는 LH-FAS v2를 제안한다. 제안된 방법에서는, 머리 자세 추정에는 FSA-Net을, 얼굴 식별에는 ArcFace를 활용하여 사진 스푸핑 여부를 판별한다. 실험을 위해, 사진 스푸핑 공격 비디오로 구성된 VD4PS 데이터셋을 제시하였으며, 이를 통해 LH-FAS v2의 균형 잡힌 정확도와 속도를 확인하였다. 본 방법은 향후 사진 스푸핑 방어에 효과적일 것으로 기대한다.

Pose-graph optimized displacement estimation for structural displacement monitoring

  • Lee, Donghwa;Jeon, Haemin;Myung, Hyun
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.943-960
    • /
    • 2014
  • A visually servoed paired structured light system (ViSP) was recently proposed as a novel estimation method of the 6-DOF (Degree-Of-Freedom) relative displacement in civil structures. In order to apply the ViSP to massive structures, multiple ViSP modules should be installed in a cascaded manner. In this configuration, the estimation errors are propagated through the ViSP modules. In order to resolve this problem, a displacement estimation error back-propagation (DEEP) method was proposed. However, the DEEP method has some disadvantages: the displacement range of each ViSP module must be constrained and displacement errors are corrected sequentially, and thus the entire estimation errors are not considered concurrently. To address this problem, a pose-graph optimized displacement estimation (PODE) method is proposed in this paper. The PODE method is based on a graph-based optimization technique that considers entire errors at the same time. Moreover, this method does not require any constraints on the movement of the ViSP modules. Simulations and experiments are conducted to validate the performance of the proposed method. The results show that the PODE method reduces the propagation errors in comparison with a previous work.

Fine-Motion Estimation Using Ego/Exo-Cameras

  • Uhm, Taeyoung;Ryu, Minsoo;Park, Jong-Il
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.766-771
    • /
    • 2015
  • Robust motion estimation for human-computer interactions played an important role in a novel method of interaction with electronic devices. Existing pose estimation using a monocular camera employs either ego-motion or exo-motion, both of which are not sufficiently accurate for estimating fine motion due to the motion ambiguity of rotation and translation. This paper presents a hybrid vision-based pose estimation method for fine-motion estimation that is specifically capable of extracting human body motion accurately. The method uses an ego-camera attached to a point of interest and exo-cameras located in the immediate surroundings of the point of interest. The exo-cameras can easily track the exact position of the point of interest by triangulation. Once the position is given, the ego-camera can accurately obtain the point of interest's orientation. In this way, any ambiguity between rotation and translation is eliminated and the exact motion of a target point (that is, ego-camera) can then be obtained. The proposed method is expected to provide a practical solution for robustly estimating fine motion in a non-contact manner, such as in interactive games that are designed for special purposes (for example, remote rehabilitation care systems).

차선검출 기반 카메라 포즈 추정 (Lane Detection-based Camera Pose Estimation)

  • 정호기;서재규
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.463-470
    • /
    • 2015
  • When a camera installed on a vehicle is used, estimation of the camera pose including tilt, roll, and pan angle with respect to the world coordinate system is important to associate camera coordinates with world coordinates. Previous approaches using huge calibration patterns have the disadvantage that the calibration patterns are costly to make and install. And, previous approaches exploiting multiple vanishing points detected in a single image are not suitable for automotive applications as a scene where multiple vanishing points can be captured by a front camera is hard to find in our daily environment. This paper proposes a camera pose estimation method. It collects multiple images of lane markings while changing the horizontal angle with respect to the markings. One vanishing point, the cross point of the left and right lane marking, is detected in each image, and vanishing line is estimated based on the detected vanishing points. Finally, camera pose is estimated from the vanishing line. The proposed method is based on the fact that planar motion does not change the vanishing line of the plane and the normal vector of the plane can be estimated by the vanishing line. Experiments with large and small tilt and roll angle show that the proposed method outputs accurate estimation results respectively. It is verified by checking the lane markings are up right in the bird's eye view image when the pan angle is compensated.