• Title/Summary/Keyword: pose estimation

Search Result 388, Processing Time 0.021 seconds

Behavior Pattern Prediction Algorithm Based on 2D Pose Estimation and LSTM from Videos (비디오 영상에서 2차원 자세 추정과 LSTM 기반의 행동 패턴 예측 알고리즘)

  • Choi, Jiho;Hwang, Gyutae;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.191-197
    • /
    • 2022
  • This study proposes an image-based Pose Intention Network (PIN) algorithm for rehabilitation via patients' intentions. The purpose of the PIN algorithm is for enabling an active rehabilitation exercise, which is implemented by estimating the patient's motion and classifying the intention. Existing rehabilitation involves the inconvenience of attaching a sensor directly to the patient's skin. In addition, the rehabilitation device moves the patient, which is a passive rehabilitation method. Our algorithm consists of two steps. First, we estimate the user's joint position through the OpenPose algorithm, which is efficient in estimating 2D human pose in an image. Second, an intention classifier is constructed for classifying the motions into three categories, and a sequence of images including joint information is used as input. The intention network also learns correlations between joints and changes in joints over a short period of time, which can be easily used to determine the intention of the motion. To implement the proposed algorithm and conduct real-world experiments, we collected our own dataset, which is composed of videos of three classes. The network is trained using short segment clips of the video. Experimental results demonstrate that the proposed algorithm is effective for classifying intentions based on a short video clip.

Robust Real-time Pose Estimation to Dynamic Environments for Modeling Mirror Neuron System (거울 신경 체계 모델링을 위한 동적 환경에 강인한 실시간 자세추정)

  • Jun-Ho Choi;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.583-588
    • /
    • 2024
  • With the emergence of Brain-Computer Interface (BCI) technology, analyzing mirror neurons has become more feasible. However, evaluating the accuracy of BCI systems that rely on human thoughts poses challenges due to their qualitative nature. To harness the potential of BCI, we propose a new approach to measure accuracy based on the characteristics of mirror neurons in the human brain that are influenced by speech speed, depending on the ultimate goal of movement. In Chapter 2 of this paper, we introduce mirror neurons and provide an explanation of human posture estimation for mirror neurons. In Chapter 3, we present a powerful pose estimation method suitable for real-time dynamic environments using the technique of human posture estimation. Furthermore, we propose a method to analyze the accuracy of BCI using this robotic environment.

Indoor Location and Pose Estimation Algorithm using Artificial Attached Marker (인공 부착 마커를 활용한 실내 위치 및 자세 추정 알고리즘)

  • Ahn, Byeoung Min;Ko, Yun-Ho;Lee, Ji Hong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.240-251
    • /
    • 2016
  • This paper presents a real-time indoor location and pose estimation method that utilizes simple artificial markers and image analysis techniques for the purpose of warehouse automation. The conventional indoor localization methods cannot work robustly in warehouses where severe environmental changes usually occur due to the movement of stocked goods. To overcome this problem, the proposed framework places artificial markers having different interior pattern on the predefined position of the warehouse floor. The proposed algorithm obtains marker candidate regions from a captured image by a simple binarization and labeling procedure. Then it extracts maker interior pattern information from each candidate region in order to decide whether the candidate region is a true marker or not. The extracted interior pattern information and the outer boundary of the marker are used to estimate location and heading angle of the localization system. Experimental results show that the proposed localization method can provide high performance which is almost equivalent to that of the conventional method using an expensive LIDAR sensor and AMCL algorithm.

Selective Extended Kalman Filter based Attitude Estimation (선택적 확장 칼만 필터 방식의 자세 추정)

  • Yun, In-Yong;Shim, Jae-Ryong;Kim, Joong-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.973-975
    • /
    • 2016
  • In this paper, we propose a selective extended Kalman filter based accurate pose estimation of the rigid body using a sensor fusion method. The pose of a rigid body can be estimated roughly by the Gauss-Newton method using the acceleration data and geomagnetic data, which can be refined with vision information and the gyro sensor information. However strong external interference noise makes the rough pose estimation difficult. In this paper, according to the measurement level of the external interference noise, the extended Kalman filter selectively uses mostly vision and gyro sensor information to increase the estimation credibility under strong interference noise environment.

  • PDF

Pose Invariant 3D Face Recognition (포즈 변화에 강인한 3차원 얼굴인식)

  • 송환종;양욱일;이용욱;손광훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2000-2003
    • /
    • 2003
  • This paper presents a three-dimensional (3D) head pose estimation algorithm for robust face recognition. Given a 3D input image, we automatically extract several important 3D facial feature points based on the facial geometry. To estimate 3D head pose accurately, we propose an Error Compensated-SVD (EC-SVD) algorithm. We estimate the initial 3D head pose of an input image using Singular Value Decomposition (SVD) method, and then perform a Pose refinement procedure in the normalized face space to compensate for the error for each axis. Experimental results show that the proposed method is capable of estimating pose accurately, therefore suitable for 3D face recognition.

  • PDF

Efficient Intermediate Joint Estimation using the UKF based on the Numerical Inverse Kinematics (수치적인 역운동학 기반 UKF를 이용한 효율적인 중간 관절 추정)

  • Seo, Yung-Ho;Lee, Jun-Sung;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.39-47
    • /
    • 2010
  • A research of image-based articulated pose estimation has some problems such as detection of human feature, precise pose estimation, and real-time performance. In particular, various methods are currently presented for recovering many joints of human body. We propose the novel numerical inverse kinematics improved with the UKF(unscented Kalman filter) in order to estimate the human pose in real-time. An existing numerical inverse kinematics is required many iterations for solving the optimal estimation and has some problems such as the singularity of jacobian matrix and a local minima. To solve these problems, we combine the UKF as a tool for optimal state estimation with the numerical inverse kinematics. Combining the solution of the numerical inverse kinematics with the sampling based UKF provides the stability and rapid convergence to optimal estimate. In order to estimate the human pose, we extract the interesting human body using both background subtraction and skin color detection algorithm. We localize its 3D position with the camera geometry. Next, through we use the UKF based numerical inverse kinematics, we generate the intermediate joints that are not detect from the images. Proposed method complements the defect of numerical inverse kinematics such as a computational complexity and an accuracy of estimation.

View-Invariant Body Pose Estimation based on Biased Manifold Learning (편향된 다양체 학습 기반 시점 변화에 강인한 인체 포즈 추정)

  • Hur, Dong-Cheol;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.960-966
    • /
    • 2009
  • A manifold is used to represent a relationship between high-dimensional data samples in low-dimensional space. In human pose estimation, it is created in low-dimensional space for processing image and 3D body configuration data. Manifold learning is to build a manifold. But it is vulnerable to silhouette variations. Such silhouette variations are occurred due to view-change, person-change, distance-change, and noises. Representing silhouette variations in a single manifold is impossible. In this paper, we focus a silhouette variation problem occurred by view-change. In previous view invariant pose estimation methods based on manifold learning, there were two ways. One is modeling manifolds for all view points. The other is to extract view factors from mapping functions. But these methods do not support one by one mapping for silhouettes and corresponding body configurations because of unsupervised learning. Modeling manifold and extracting view factors are very complex. So we propose a method based on triple manifolds. These are view manifold, pose manifold, and body configuration manifold. In order to build manifolds, we employ biased manifold learning. After building manifolds, we learn mapping functions among spaces (2D image space, pose manifold space, view manifold space, body configuration manifold space, 3D body configuration space). In our experiments, we could estimate various body poses from 24 view points.

Real-time Human Pose Estimation using RGB-D images and Deep Learning

  • Rim, Beanbonyka;Sung, Nak-Jun;Ma, Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.113-121
    • /
    • 2020
  • Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.

Robust pupil detection and gaze tracking under occlusion of eyes

  • Lee, Gyung-Ju;Kim, Jin-Suh;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.11-19
    • /
    • 2016
  • The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.

Camera Exterior Parameters Based on Vector Inner Production Application: Absolute Orientation (벡터내적 기반 카메라 외부 파라메터 응용 : 절대표정)

  • Chon, Jae-Choon;Sastry, Shankar
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.70-74
    • /
    • 2008
  • In the field of camera motion research, it is widely held that the position (movement) and pose (rotation) of cameras are correlated and cannot be independently separated. A new equation based on inner product is proposed here to independently separate the position and pose. It is proved that the position and pose are not correlated and the equation is applied to estimation of the camera exterior parameters using a real image and 3D data.