• Title/Summary/Keyword: portland cement

Search Result 1,169, Processing Time 0.025 seconds

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Evaluation of Mechanical Properties of Mortar Mixed with Zeolites and Active Hwangtoh (제올라이트 및 활성 황토를 혼입한 모르타르의 역학적 특성 평가)

  • Kwon, Seung-Jun;Lim, Hee-Seob;Kim, Hyeok-Jung;Hyun, Jung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.405-412
    • /
    • 2019
  • In this study, the physical and chemical properties of mortar are evaluated by micro-analysis, taking into account the substitution rate(20%, 30%, and 40%) of zeolite with porous properties and active hwangtoh. First, the physical and chemical properties of zeolite and active hwangtoh are reviewed to confirm that the specific surface area of those is similar with ordinary portland cement, and the main chemical composition is SiO2, Al2O3, Fe2O3, etc.. So, it is thought that they have the properties of pozolan reactive materials. As the results of the strength test considering the amount of substitution based on that of cement, It is confirmed that strength decreases with the increase of the replacement amount of zeolite and active hwangtoh, and the strength of mortar with replacement rate of 20% is higher than OPC mortar. It is confirmed that the amount of porosity is increased due to chemical properties of zeolite and active hwangtoh, and in particular, the size of the pore is greater than 1㎛ in mortar mixed with active hwangtoh.

Evaluation of pH and Compressive Strength Development of Alpha-Calcium Sulfate Hemihydrate-based Binder (알파형 반수석고 기반 결합재의 pH 및 강도발현 평가)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • This study examined the compressive strength development and pH values of alpha-calcium sulfate hemihydrate(${\alpha}-CH$)-based binders developed for vegetation concrete with neutral pH between 6~7. Considering cost down and strength enhancement of the prepared binders, the ${\alpha}-CH$ was partially replaced by ground granulated blast furnace slag(GGBS), fly ash(FA), or ordinary Portland cement(OPC) by 25% and 50%. The compressive strength of mortars using 100% ${\alpha}-CH$ was 50% lower than that of 100% OPC mortars. With the increase of the replacement level of GGBS or FA, the compressive strength of ${\alpha}-CH$-based mortars tended to decrease, whereas the pH values were maintained to be 6.5~7.5. The main hydration products of ${\alpha}-CH$-based binders with GGBS or FA were a gypsum($CaSO_4$), whereas portlandite($Ca(OH)_2$) was not observed in such binders. Meanwhile, the pH values of ${\alpha}-CH$-based binders with OPC exceeded 11.5 due to the formation of $Ca(OH)_2$ phase as a hydration product. From the thermogravimetric analysis, the amount of $Ca(OH)_2$ in ${\alpha}-CH$-based binders with OPC was evaluated to be approximately 10% of the cement content.

Analysis of Microstructure and Thermal Conductivity of Concrete Thermal Energy Storage based on Amount of Graphite Mixture (그라파이트 혼입량에 따른 에너지 저장 콘크리트의 미세구조 및 열전도도 분석)

  • Kim, Se-Yun;Kim, Sung-Jo;Suh, Jeewoo;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.293-300
    • /
    • 2021
  • In this study, the microstructure and thermal conductivity correlation was investigated for concrete materials used in concrete thermal energy storage (CTES) among real-time energy storage devices. Graphite was used as admixture to increase the thermal conductivity performance of the CTES. Concrete specimens of 10% and 15% substitution of cement by mass with graphite, as well as ordinary portland cement (OPC) specimens were prepared, and the microstructural changes and effects on thermal conductivity were analyzed. Porosities of OPC and concrete with graphite were compared using micro-CT, and the microstructural characteristics were quantified using probability functions. Three-dimensional virtual specimens were constructed for thermal analysis, to confirm the effect of microstructural characteristics on thermal conductivity, and the results were compared with the measured conductivity obtained using the hot-disc method. To identify thermal conductivity of graphite for thermal analysis, solid phase conductivity was inversely determined based on simulation and experimental results, and the effect of graphite on thermal conductivity was analyzed.

Effect of Blast Furnace Slag and Desulfurized Gypsum on Hardening of CFBC Boiler Coal Ash (CFBC 보일러 석탄회의 경화에 대한 고로슬래그, 탈황석고의 영향)

  • Lee, Woong-Geol;Kim, Jin-Ho;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.443-450
    • /
    • 2021
  • The effects of blast furnace slag(BFS) and desulfurized gypsum(FDG) on the compressive strength of CFBA, and self-hydration of CFBA were studied. CFBA has self-hydrating and hardening properties, and it can be seen that the compressive strength of CFBA can be improved by using appropriate amounts of BFS and FDG. In addition, the self-hardening properties of CFBA are similar to the hydration reaction of 4CaO·Al2O3·Fe2O3 (C4AF), a cement clinker mineral, and when free-CaO, CaSO4 and CaCO3 coexist, Compressive strength of CFBA is expressed by the formation of calcium carbo compounds and hydrates of ettringite, calcium silicate, and calcium aluminate.

Resistance to Sulfate Attack of Concrete Containing LCD glass powder Using Industrial By-products (산업부산물을 활용한 LCD 유리 미분말 혼입 콘크리트의 황산염침식 저항성)

  • Kim, Seong-Kyum;Song, Jae-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2019
  • Purpose: This study aims to enhance the resistance against sulfate attack compared to ordinary Portland cement (OPC) concrete by using liquid crystal display (LCD) as binder. Method: The fundamental properties including compressive strength and porosity of concrete replaced by LCD up to 15% at increments of 5% and in turn, the weight, volume, and strength loss of LCD-mixed concrete was analyzed. Results: For the concrete substituted by 5% of LCD, it showed the highest compressive strength at 28 days of curing, and particular at immersion of $Na_2SO_4$ solution, it was achieved the lowest loss of weight, volume and strength due to an decreased porosity at capillaries. In contrast, there is no distinct difference of the sulfate attack resistance between LCD-mixed concretes under exposure of $MgSO_4$ solution, excepted for OPC concrete. Conclusion: In this study, comparison of resistance to sulfate attack between LCD-mixed concretes, and it would be proposed the possibility of LCD usage as binder through long-term verification with extended replacement ratio and identification of changes of hydrates in the cement matrix.

A Study on Performance Evaluation of Early-age Concrete with EOS Fine Aggregate and GGBFS (EOS 잔골재 및 GGBFS를 혼입한 초기재령 콘크리트의 성능 평가에 관한 연구)

  • Kwon, Seung Jun;Cho, Sung Jun;Lim, Hee Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.113-119
    • /
    • 2019
  • Many researches on alternative materials as construction materials is continuing by recycling industrial byproducts due to shortage of sitereclamation and natural aggregates. In this paper, engineering properties in early-aged OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete are evaluated with EOS aggregate replacement. The related experiments were carried out with 0.6 of water to binder ratio, three levels of EOS replacement ratios (0%, 30% and 50%) for fine aggregate, and two levels of cement replacement with GGBFS (0% and 40%). Several tests such as slump air content, and unit mass measurement are performed for fresh concrete, and compressive strength and diffusion coefficient referred to NT BUILD 492 method are measured for hardened concrete. Through the tests, it was evaluated that the compressive strength in concrete with EOS aggregate increased to 3 days and 7 days but slightly decreased at the age of 28 days. In the accelerated chloride penetration test, GGBFS concrete showed reduced diffusion coefficients by 60 - 67% compared with OPC concrete. The lowest chloride diffusion coefficient was evaluated in the 50% replacement with EOS aggregate, which showed an applicability of EOS aggregate to concrete production.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

A Study on Electromagnetic Properties in OPC Mortar with Different Chloride Content (염화물을 혼입한 OPC 모르타르의 전자기 특성에 대한 연구)

  • Kwon, Seung-Jun;Na, Ung-Jin;Feng, M.Q.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.565-571
    • /
    • 2008
  • Recently, the evaluation technique using NDT (Nondestructive Technique : NDT) is widely utilized because it makes little damage on RC (Reinforced Concrete : RC) structures. The techniques using electromagnetic properties (EM properties) are also attempted for the evaluation of the performance of concrete which is nonmetallic. For the economic manufacturing of concrete material, sea-sand is often used as aggregate, however, chloride ion in concrete has direct effects on steel corrosion and EM properties. In this study, OPC mortar specimens with 5 different chloride amount (0.0, 0.6, 1.2, 2.4, and $3.6kg/m^3$) and 3 different water-cement ratios (45%, 55%, and 65%) are prepared in order to investigate the EM properties corresponding to concrete properties. The EM properties of conductivity and dielectric constant are measured in the frequency range over 0.2~20 GHz. To facilitate the comparison of EM properties with chloride content, average values are taken respectively for the conductivity and dielectric constant measured over the 5~20 GHz frequency range. According to the results of this experiment, dielectric constant and conductivity are increased with lower W/C ratio and larger amount of chloride content.

Progressive Evaluation of Concrete Deterioration Caused by Chloride-Induced Steel Corrosion Using Impact-Echo Testing (충격 반향 신호 모니터링을 통한 철근 부식 진전에 따른 콘크리트 상태 평가)

  • Rizky Pitajeng;Julfikhsan Ahmad Mukhti;Seong-Hoon Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.