• Title/Summary/Keyword: portable electronic nose system

Search Result 13, Processing Time 0.026 seconds

Implementation of a Portable Electronic Nose System for Field Screening (필드 스크린을 위한 휴대용 전자코 시스템의 구현)

  • Byun, Hyung-Gi;Lee, Jun-Sub;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • There is currently much interest in the development of instruments that emulate the senses of humans. Increasingly, there is demand for mimicking the human sense of smell, which is a sophisticated chemosensory system. An electronic nose system is applicable to a large area of industries including environmental monitoring. We have designed a protable electronic nose system using an array of commercial chemical gas sensors for recognizing and analyzing the various odours. In this paper, we have implemented a portable electronic nose system using an array of gas sensors for recognizing and analyzing VOCs (Volatile Organic Compounds) in the field. The accuracy of a portable electronic nose system may be lower than an instrument such as GC/MS (Gas Chromatography/Mass Spectrometer). However, a portable electronic nose system could be used on the field and showed fast response to pollutants in the field. Several different algorithms for odours recognition were used such as BP (Back-Propagation) or LM-BP (Levenberq-Marquardt Back-Propagation). We applied RBF (Radial Basis Function) Network for recognition and quantifying of odours, which has simpler and faster compared to the previously used algorithms such as BP and LM-BP.

Design and performance evaluation of portable electronic nose systems for freshness evaluation of meats (육류 신선도 판별을 위한 휴대용 전자코 시스템 설계 및 성능 평가)

  • Kim, Jae-Gone;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.525-532
    • /
    • 2011
  • The aim of this study was to develop a portable electronic nose system for freshness measurement of meats, which could be an alterative of subjective measurements of human nose and time-consuming measurements of conventional gas chromatograph methods. The portable electronic system was o optimized by comparing the measurement sensitivity and hardware efficiency, such as power consumption and dimension reduction throughout two stages of the prototypes. The electronic nose systems were constructed using an array of four different metal oxide semiconductor sensors. Two different configurations of sensor array with dimension were designed and compared the performance respectively. The final prototype of the system showed much improved performance on saving power consumption and dimension reduction without decrease of measurement sensitivity of pork freshness. The results show the potential of constructing a portable electronic system for the measurement of meat quality with high sensitivity and energy efficiency.

Development of a Portable Electronic Nose System (I) - System Development - (휴대용 전자코 시스템 개발 (I) - 시스템 개발 -)

  • Lee, Jeong-Woo;Kim, Seong-Min
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2008
  • The purpose of this study was to develop a portable electronic nose system to measure volatile components of agricultural and food products. Also, a graphical operating software to control the electronic nose system and to acquire signals through the Internet was developed. An array of five commercial metal oxide gas sensors was used to detect various volatile gas components of target samples. Transient and steady state signals were analyzed to extract variables related to sample states, To find optimal operating conditions of the system, several experiments were performed with different gas chambers, vacuum pumps, gas sampling temperatures, and sample container sizes. The patterns of gas sensor signals were analysed to find effects of the various conditions.

Design of Portable E-Nose System using Neural Network Algorithm (신경회로망을 이용한 휴대용 E-Nose 시스템 개발)

  • Kim, Jeong-Do;Kim, Dong-Jin;Ham, Yu-Kyung;Hong, Cheol-Ho;Byun, Hyung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.39-42
    • /
    • 2004
  • We have designed a portable electronic nose(e-nose) system using an array of commercial gas sensors for recognition and analyzing the various odours. In this paper, we have implemented a portable e-nose system using an array gas sensors and personal digital assistants(PDA) for recognizing and analyzing volatile organic compounds(VOCs) in the field. Field screening for pollutants has been a target of instrumental development for number of year. A portable e-nose system can be substantial benefit to rapidly localize the spacial extent of a pollution or to find pollutants source. And, by using PDA, E-nose have a better function such as the easy user-interface and data transfer by internet from on- site to remote computer. We adapted the Levenberg-Marquardt algorithm based on the back-propagation and proposed the method that could be predicted concentration levels of VOCs gases after classification by separating neural network into two parts.

  • PDF

Design of a Potable Electronic Nose System using PDA (PDA를 이용한 휴대용 Electronic Nose 시스템 개발)

  • Kim, Jeong-Do;Byun, Hyung-Gi;Ham, Yu-Kyung
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.454-461
    • /
    • 2004
  • We have designed a portable electronic nose (e-nose) system using an array of commercial gas sensors and personal digital assistants (PDA) for the recognition and analysis of volatile organic compounds (VOC) in the field. Field screening of pollutants has been a target of instrumental development during the past years. A portable e-nose system was advantageous to localize the special extent of a pollution or to find pollutants source. The employment of PDA improved the user-interface and data transfer by Internet from on-site to remote computer. We adapted the Lavenberg-Marquardt algorithm based on the back-propagation and proposed the method that could predict the concentration levels of VOC gases after classification by separating neural network into two parts.

Design and performance evaluation of portable electronic nose systems for freshness evaluation of meats II - Performance analysis of electronic nose systems by prediction of total bacteria count of pork meats (육류 신선도 판별을 위한 휴대용 전자코 시스템 설계 및 성능 평가 II - 돈육의 미생물 총균수 예측을 통한 전자코 시스템 성능 검증)

  • Kim, Jae-Gone;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.761-767
    • /
    • 2011
  • The objective of this study was to predict total bacteria count of pork meats by using the portable electronic nose systems developed throughout two stages of the prototypes. Total bacteria counts were measured for pork meats stored at $4^{\circ}C$ for 21days and compared with the signals of the electronic nose systems. PLS(Partial least square), PCR (Principal component regression), MLR (Multiple linear regression) models were developed for the prediction of total bacteria count of pork meats. The coefficient of determination ($R_p{^2}$) and root mean square error of prediction (RMSEP) for the models were 0.789 and 0.784 log CFU/g with the 1st system for the pork loin, 0.796 and 0.597 log CFU/g with the 2nd system for the pork belly, and 0.661 and 0.576 log CFU/g with the 2nd system for the pork loin respectively. The results show that the developed electronic system has potential to predict total bacteria count of pork meats.

A portable electronic nose (E-Nose) system using PDA device (개인 휴대 단말기 (PDA)를 기반으로 한 휴대용 E-Nose의 개발)

  • Yang, Yoon-Seok;Kim, Yong-Shin;Ha, Seung-Chul;Kim, Yong-Jun;Cho, Seong-Mok;Pyo, Hyeon-Bong;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2005
  • The electronic nose (e-nose) has been used in food industry and quality controls in plastic packaging. Recently it finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. Moreover, the use of portable e-nose enables the on-site measurements and analysis of vapors without extra gas-sampling units. This is expected to widen the application of the e-nose in various fields including point-of-care-test or e-health. In this study, a PDA-based portable e-nose was developed using micro-machined gas sensor array and miniaturized electronic interfaces. The rich capacities of the PDA in its computing power and various interfaces are expected to provide the rapid and application specific development of the diagnostic devices, and easy connection to other facilities through information technology (IT) infra. For performance verification of the developed portable e-nose system, Six different vapors were measured using the system. Seven different carbon-black polymer composites were used for the sensor array. The results showed the reproducibility of the measured data and the distinguishable patterns between the vapor species. Additionally, the application of two typical pattern recognition algorithms verified the possibility of the automatic vapor recognition from the portable measurements. These validated the portable e-nose based on PDA developed in this study.

Fabrication and Characterization of Portable Electronic Nose System using Gas Sensor Array and Artificial Neural Network (가스센서 어레이와 인공 신경망을 이용한 소형 전자코 시스템의 제작 및 특성)

  • 홍형기;권철한;윤동현;김승렬;이규정
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.99-102
    • /
    • 1997
  • An electronic nose system is an instrument designed far mimicking human olfactory system. It consists generally of gas (odor) sensor array corresponding to olfactory receptors of human nose and artificial neural network pattern recognition technique based on human biological odor sensing mechanism. Considerable attempts to develop the electronic nose system have been made far applications in the fields of floods, drinks, cosmetics, environment monitoring, etc. A portable electronic nose system has been fabricated by using oxide semiconductor gas sensor array and pattern recognition technique such as principal component analysis (PCA) and back propagation artificial neural network The sensor array consists of six thick film gas sensors whose sensing layers are Pd-doped WO$_3$ Pt-doped SnO$_2$ TiO$_2$-Sb$_2$O$_3$-Pd-doped SnO$_2$ TiO$_2$-Sb$_2$O$_{5}$-Pd-doped SnO$_2$+Pd filter layer, A1$_2$O$_3$-doped ZnO and PdCl$_2$-doped SnO$_2$. As an application the system has been used to identify CO/HC car exhausting gases and the identification has been successfully demonstrated.d.

  • PDF

Vapor Recognition Using Image Matching of Micro-Array Sensor Response from Portable Electronic Nose (휴대용 전자 후각 장치에서 다채널 마이크로 센서 신호의 영상 정합을 이용한 가스 인식)

  • Yang, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.64-70
    • /
    • 2011
  • Portable artificial electronic nose (E-nose) system suffers from noisy fluctuation in surroundings such as temperature, vapor concentration, and gas flow, because its measuring condition is not controled precisely as in the laboratory. It is important to develop a simple and robust vapor recognition technique applicable to this uncontrolled measurement, especially for the portable measuring and diagnostic system which are expanding its area with the improvements in micro bio sensor technology. This study used a PDA-based portable E-nose to collect the uncontrolled vapor measurement signals, and applied the image matching algorithm developed in the previous study on the measured signal to verify its robustness and improved accuracy in portable vapor recognition. The results showed not only its consistent performance under noisy fluctuation in the portable measurement signal, but also an advanced recognition accuracy for 2 similar vapor species which have been hard to discriminate with the conventional maximum sensitivity feature extraction method. The proposed method can be easily applied to the data processing of the ubiquitous sensor network (USN) which are usually exposed to various operating conditions. Furthermore, it will greatly help to realize portable medical diagnostic and environment monitoring system with its robust performance and high accuracy.

Evaluation of Freshness of Chicken Meat during Cold Storage Using a Portable Electronic Nose (휴대용 전자코를 이용한 계육의 냉장 중 신선도 평가)

  • Lee, Hoon-Soo;Chung, Chang-Ho;Kim, Ki-Bok;Cho, Byoung-Kwan
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.313-320
    • /
    • 2010
  • The purpose of this study was to evaluate the freshness of chicken meat during 19 d of storage at $4^{\circ}C$ using a portable electronic nose. The portable system consisted of six different metal oxide sensors and a moisture sensor. Determination of volatile compounds with gas chromatography-mass spectrometry, total bacterial count (TBC), and 2-thiobarbituric acid reactive substances (TBARS) monitored the quality change of the samples. These results were compared with the results measured by the electronic nose system. TBC and TBARS measurements could be separated into five groups and seven groups, respectively, among ten groups. According to principal component analysis and linear discriminant analysis with the signals of the portable electronic nose, the sample groups could be clearly separated into eight groups and nine groups, respectively, among ten groups. The portable electronic nose demonstrated potential for evaluating freshness of stored chicken.