• Title/Summary/Keyword: port concentration

Search Result 227, Processing Time 0.021 seconds

Analysis of Air Circulation in Oyster Mushroom Farm

  • Jeong, Won-Geun;Lim, Hack-Kyu;Kim, Tae-Han
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Oyster mushroom farm which could not meet optimum temperature range yields non-uniform sized, low quality products. Thus, this study, utilizing STAR CCM+, one of the computational fluid dynamics (CFD) programs, analyzed the impact of air circulation and temperature distribution. Methods: After we visited numerous mushroom farms, we measured the temperature at the discharge ports of heaters, fan capacity, and the locations of the air circulators in the farms. According to the data, most mushroom growers installed the heaters near the entrance and discharge ports of the heaters at the third growing bed on the same height as the heaters in the entrance. The temperature at the discharge port of heater was $1,26^{\circ}C$, and the fan capacity was 4,500 $m^3$/hr. The air circulator was placed in the center of the mushroom farm 50cm above the ground, and its capacity of inlet port was 1,100 $m^3$/hr and discharge port 1,600 $m^3$/hr. The mushroom farm was insulated. Results: According to the analysis of the temperature distribution in the vertical plane of the entrance side, no air circulation causes the high temperature zone of 296~299K at the discharge port of the heater to take up 34% of area while the operation of air circulators causes it to occupy only 9%. This means that not using air circulators leads to a concentration of high temperature at the discharge port near the entrance. In addition, with the results of the analysis of the temperature distribution in the vertical planes of the center, no air circulation causes the temperature zone of 295~298K at the discharge port of the heater to take up 48% of area while the operation of air circulators causes it to occupy 80%. This shows that the high outlet port temperature disseminated to the center. Conclusions: After ninety minute operation of both heater and air circulator, the interior temperature became stabilized in the mushroom farm. Air circulation made the high temperature at the discharge port disseminate to the center and exit in the farm and equalize the temperature distribution.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

Trend Analysis of the COD and Nutrients Concentrations in the Yongwon Channel, Chinhae (진해 용원수로의 COD 및 영양염류 농도 추세분석)

  • Cho, Hong-Yeon;Chae, Jang-Won;Park, Joung-Guy;Koo, Myung-Seo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.421-428
    • /
    • 2008
  • Youngwon channel located in Chinhae city and formed by the Busan New Port Construction Project has been concerned about the water quality degradation problems because of the flow and pollutants stagnation due to its long-narrow shape. In this study, the water quality(hereafter WQ) variation is analysed by using the monthly WQ data measured in Yongwon channel from 2003 to 2007. The analysis shows that the TN and TP concentration in the inside Yongwon channel is definitely worse than the TN and TP concentration in the entrance of the Yongwon channel based on the 95% confidence level. The COD, TN, and TP concentrations in the Yongwon channel are 1.34, 2.08, and 1.80 times larger than that in the entrance of the Yongwon channel, respectively. It has been found that only the TP concentration in SW-26 station has an increasing trend based on the Mann-Kendall test with respect to 95% confidence level. The other stations and the other WQ constituent changes do not have the any significant trends.

Electrochemical Determination of Glucose in Sea Water (해수 중 글루코오스 농도의 전기화학적 측정)

  • 김영한
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.73.2-77
    • /
    • 2000
  • A possibility of the implementation of a quartz crystal sensor to the detennination of chemical oxygen demand is examined by checking the electrochemical behavior of the sensor in a glucose solution. Since the surface of a quartz crystal has to be oxidized, a relatively active metal is coated on the surface of a usual 9 MHz AT-cut crystal. The electrochemical behavior is investigated by measuring the changes of current, resonant frequency and resonant resistance while a constant potential is applied. The crystal is installed in a specially designed container, and a QUartz crystal analyzer is utilized to measure the frequency and resistance simultaneously. The variations of the measurements are examined at different concentrations of glucose solution and the effect of the concentration is analyzed to find a proper relation between the concentration and the measurements. It is fOlmd that a linear relation between the concentration of less than 900 Dpm and the peak current when a constant potential of -180 m V vs. Ag/ AgCI reference is applied.

  • PDF

An Experimental Study on Freezing Behavior of NaCl and Heavy Metal Aqueous Solution Using Freeze Concentration Method (동결농축법을 이용한 염수 및 중금속 수용액의 동결거동에 관한 실험 연구)

  • Kim, Jung-Sik;Lim, Seung-Taek;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • Recently, waste water treatment system is developed in small and middle size to get more economic advantage. Freeze concentration system has high thermodynamic efficiency and low energy consumption, can re-use purified water and cold energy obtained from ice. This study was experimentally performed to investigate pollution containment in frozen layer by cooling wall temperature, air-bubble flow methods, initial ice-lining thickness of frozen layer in NaCl aqueous solution and the representative heavy metals, Pb and Cr aqueous solution. As the result, a decrease in the cooling wall temperature bring a higher growth rate of ice front and the more solute was involved in frozen layer. The method to inject directly air-bubble into ice-liquid interface through ring shape nozzle gave high purity of ice compared to indirect method. Ice lining in 5mm thickness resulted in frozen layer with higher purity than 1mm thickness.

A Study on the Initial Behavior of Dredged Material Disposal in the Coastal Water (연안수역에서 투기준설토의 초기거동에 관한 연구)

    • Journal of Korean Port Research
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 1995
  • Investigation of the physical behavior of dredged material disposal in coastal water includes estimations of water column concentration in the receiving water, exposure time, the initial deposition pattern as well as thickness of material at the dumping fields near the estuary area. Calculation based on vertical setting and horizontal advection of single particles ignore the effects of bulk properties of the disposed material, vertical and horizontal diffusion, and material dilution due to the entrainment of ambient water during descent. This paper focuses on the spatial and temporal changes in the dumping fields for the water column and bottom at a hypothetically confined coastal water, where the ambient time-invariant velocity and density profiles are applied, within the initial time period following the instantaneous release of the dredged material. This model accounts the behavior of material after release divided into three phases: convective descent, dynamic collapse and long-term passive dispersion

  • PDF

A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition (흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구)

  • 황승환;조용석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.

Characteristics of HC Emissions by Starting Conditions in an SI Engine (가솔린 기관의 시동조건에 따른 HC의 배출특성)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • During the SI engine starting up, starting conditions directly contribute to the unburned hydrocarbon emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame ionization Detector (FRFID). The result showed that HC emissions, which were emitted at the cold coolant and catalyst temperature, were generated much higher than those of hot coolant and catalyst temperatures. In additions, fuel injection skips reduced highly HC emissions. It is convinced that optimized fuel injection skip method according to coolant and catalyst temperatures could be applied to reduce HC emissions during the SI engine starts.

A Study on the Sector Division for Effective Vessel Traffic Service : Focused on Daesan, Pyeongtaek and Inchon Harbour

  • Yang, Hyoung-Seon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.265-270
    • /
    • 2010
  • The national VTS was launched in 1993, and has adopted a harbour-oriented control method which is unable to consider enough characteristics of its work. However, for the past 17 years, the characteristics has changed due to increased amount of vessels. Up to now the domestic Vessel Traffic Service has adopted harbour-oriented control method which is unable to consider enough characteristics of its work. However, developed countries have carried out waters-oriented control method, according to the using areas of ships, to be well considered the characteristics of control for increasing efficiency of it. Especially, VTS of Daesan, Pyeongtaek and Inchon harbour can have confusions of control because of overlapped service areas of it. Therefore, in this paper suggested a new Sector Division that the relevants waters is divided into 3 operational Regions and these are divided into nine sectors again, for the purpose of improving the efficiency and the concentration of VTS.

A Study on the Reduction of HC Emissions by Fuel Injection Methods during the SI Engine Start (가솔린기관의 시동시 연료분사기법에 의한 HC 배출저감 연구)

  • Kim, Seong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.257-262
    • /
    • 2003
  • Engine-out HC emissions were investigated during engine start. The tests were conducted on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine at different coolant temperatures and fuel injection-skip methods; no skip, 1 cycle-skip and 3 cycle-skip. To understand the characteristics of engine-out HC emissions, HC concentration was measured at a exhaust port using a Fast Response Flame Ionization Detector (FRFID). The result show that HC emissions were emitted at the cold coolant temperature much higher than those of the hot coolant. In additions, the fuel injection skip highly reduced engine-out HC emissions. It is convinced that optimized fuel injection skips according to coolant temperatures could be applied to reduce HC emissions during SI engine start.

  • PDF