• Title/Summary/Keyword: porous vegetation concrete

Search Result 18, Processing Time 0.022 seconds

Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder (비소성 무기결합재를 사용한 무시멘트 다공성 식생콘크리트의 물리·역학적 특성 및 동결융해저항성 평가)

  • Kim, Hwang Hee;Kim, Chun Soo;Jeon, Ji Hong;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.37-44
    • /
    • 2014
  • The physical, mechanical and freezing and thawing properties of non cement porous vegetation concrete using non-sintering inorganic binder have been evaluated in this study. Four types of porous vegetation concrete according to the binder type is evaluated. The pH value, void ratio, compressive strength, repeated freezing and thawing properties were tested. The test results indicate that the physical, mechanical and repeated freezing and thawing properties of porous vegetation concrete using the non-sintering inorganic binder is increased or equivalent compared to the porous vegetation concrete using the blast furnace slag + cement and hwang-toh + cement binders. Also, Vegetation monitoring test results indicate the porous vegetation concrete using the non-sintering inorganic binder have increasing effects of vegetation growth.

An Experimental Study on the Evaluation of Physical Properties of Planting Porous Concrete using Industrial By-products. (산업부산물을 이용한 식생용 포러스콘크리트의 물성평가에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Taek-Woo;Kwon, Hyuk-Joon;Lee, Bong-Chun;Lee, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.929-934
    • /
    • 2001
  • As the notion of environment protection changes throughout the world, construction engineers, as part of the effort to resolve environmental problems, have been actively doing research on environmental friendly porous concrete using large and non-uniform aggregate. Concrete having a great deal of continuous porosity enable water and air to pass freely through firmly hardened material, allowing necessary nutrients to reach roots of vegetation, thereby sustaining them. It is possible to prevent the exhaustion of natural resources by recycling waste concrete and industrial by-products, to reduce damage caused by the destruction of nature through effective management of natural resources, to preserve the natural environment and vegetation in urban areas by activating the soil, protecting the underground ecology system, and growing garden plants through the application of environmentally friendly concrete.

  • PDF

The Study on the Physical and Mechanical Properties of Porous Concrete according to Compaction Method (다짐방법에 따른 포러스콘크리트의 물리.역학적 특성에 관한 연구)

  • Song, Jae-Lib;Park, Seung-Bum;Seo, Dae-Seuk;Lee, Jun;Jang, Young-Ill
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.813-816
    • /
    • 2006
  • Recently, improvements in the standard of living in industrial area require the establishment of a convenient residential environment in order to enhance the quality of living. To achieve such an environment, it is necessary to effectively reduce or prevent various environmental problems occurring in and around residential areas. Although conventional concrete has been regarded as a destroyer of nature, water and air can pass freely through concrete when it is made porous concrete by forming continuous void. In view of the harmony between nature and concrete, various research paths are being taken focusing on coarse aggregates to make porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification, and applicability to vegetation. In this study, the Physical and Mechanical Properties of porous concrete according to compaction method analyzed by void ratio, coefficient of permeability and compressive strength.

  • PDF

A Study on Chemical Neutralization and Production of Planting Porous Concrete Using Low-Grade Iron Ore (저 품위 철광석을 사용한 식생용 투수 콘크리트의 중성화 및 제작에 관한 연구)

  • Eun, Hee-Chang;Lee, Min-Su;Bae, Choong-Yeol
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.31-38
    • /
    • 2007
  • Recently produced concrete has a tendency to overcome environmental defects. Porous and planting Eco-concrete requires the neutralization process and enough void in concrete to contain water, to pass air freely, and provides necessary nutrients to vegetation roots. The biological environment in concrete is not suitable for planting because the concrete possesses strong alkali constituent of pH 11-13. This study evaluated the strength and serviceability of concrete as well as the chemical characteristics of concrete mixed by low-grade iron ore left in the abandoned mine and treated by Ammonium monohydrogen phosphate, $(NH_4)_2HPO_4$. Test variables include two kinds of coarse aggregates such as crushed stones and low-grade iron ore, the duration time and the period for neutralization treatment by Ammonium monohydrogen phosphate, $(NH_4)_2HPO_4$, and the proportion ratio of cement, blast furnace slag and silica fume.

  • PDF

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

The Properties of Concretes for Planting Vegetations Based on Porous Concretes (다공질 콘크리트를 이용한 식생용 콘크리트 특성 - 다공질 콘크리트의 물리화학적 특성을 중심으로 -)

  • Koo, Bon-Hak;Kim, Yong-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • This study was carried out to find out the capability of applying such materials as porous concrete, could be called environmentally friendly materials, for bringing vegetations. For verying the purpose of the experiments such materials as potland cement and slag cement, coarse aggravates(${\phi}25mm$, ${\phi}18mm$, ${\phi}13mm$) were mixed. In the voids of porous concrete peatmoss and chemical fertilizers were filled, and on the surface of concrete organic soils were adhered for seeding grasses. For testing compressive strength, pH, voids the 12($4mixed{\times}3times$) specimens were manufactured. As results, the compressive strength of porous concretes were from 59 to $267kg/cm^2$ depend on mixed ratios between cements and coarse aggregates. Voids of concrete were from 33% to 40% and the pH were varied pH 8-10.5. So the capability of planting vegetations was to be ascertained. The germination and growth of grasses were not good, but it could be found out that the capability of vegetations on the concretes. For generalizing these results and applying on the construction sites, it is necessary to verificate following studies for various conditions.

  • PDF

Mechanical Properties of Carbon Fiber Reinforced Porous Concrete for Planting

  • Park Seung-Bum;Kim Jeong-Hwan
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.161-169
    • /
    • 2002
  • The mechanical properties of fiber reinforced porous concrete for use as a planting material were investigated in this study. Changes in physical and mechanical properties, subsequent to the addition of carbon fiber and silica fume, were studied. The effects of recycled aggregate were also evaluated. The applicability as planting work concrete material was also assessed. The results showed that there were no remarkable changes in the void and strength characteristics following the increase in proportion of recycled aggregate. Also, the mixture with 10% silica fume was found to be the most effective for strength enforcement. The highest flexural strength was obtained when the carbon fiber was added with $3\%$. It was also noticed that PAN-derived carbon fiber was superior to Pitch-derived ones in view of strength. The evaluation of its usage for vegetation showed that the growth of plants was directly affected by the existence of covering soil, in case of having the similar size of aggregate and void.

  • PDF

A Study on the Environment Friendly Canal Construction Method using Porous Loess Block (다공성 황토블록을 이용한 친환경 배수로공법 개발연구)

  • Choi, Kyoung-Young;Sung, Hyun-Je;Eun, Jae-Ki;Yang, Young-Chul;Kim, Chae-Soo;Um, Dae-Ho;Kim, Sun-Joo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.147-150
    • /
    • 2003
  • According to development and urbanization of country, environment and ecosystem were ignored during the past thirty years. Therefore canal, which had been developed by concrete, is remained as the space where life can not alive any longer. In this study, Environmental friendly canal construction method using porous loess block are investigated. Porous loess blocks are which is developing focused on both scenery and hydraulic safty. Canal using Porous loess blocks can take a vegetation's distribution and improvement of soil properties and hydraulic safty of bank. In this study, The examination of applied canal construction method using porous loess block that is considering vegetation's distribution and properties of material is done to present development of environmental friendly canal construction method.

  • PDF

Strengths and Permeability Properties of Porous Polymer Concrete for Pavement with Different Fillers (충전재 종류에 따른 포장용 포러스 폴리머 콘크리트의 강도 및 투수 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.51-59
    • /
    • 2007
  • Recently, concrete has been made porous and used for sound absorption, water permeation, vegetation and water purification according to void characteristics. Many studies are carried out on the utilization of sewage sludge, fly ash and waste concrete to reduce the environmental load. This study was performed to evaluate the void, strength, relationship between void and strength, permeability and chemical resistance properties of porous polymer concrete for pavement with different fillers. An unsaturated polyester resin was used as a binder, crushed stone and natural sand were used as an aggregate and bottom ash, fly ash and blast furnace slag were used as fillers. The mix proportions were determined to satisfy the requirement for the permeability coefficient, $1{\times}10^{-2}$ cm/s for general permeable cement concrete pavement in Korea. The void ratios of porous polymer concrete with fillers were in the range of $18{\sim}23%$. The compressive strength and flexural load of porous polymer concrete with fillers were in the range of $19{\sim}22$ MPa and $18{\sim}24$ KN, respectively. The permeability coefficients of porous polymer concrete with fillers were in the range of $5.5{\times}10^{-1}{\sim}9.7{\times}10^{-2}$ cm/s. At the sulfuric acid resistance, the weight reduction ratios of porous polymer concrete immersed during 8-week in 5% $H_{2}SO_{4}$ were in the range of $1.08{\sim}3.56%$.

An Experimental Study on the Evaluation of Porous Concrete using Industrial By-products of Planting Factory (산업부산물을 이용한 포러스콘크리트의 식생능력평가에 관한 연구)

  • 박승범;권혁준;서대석;윤덕열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.779-784
    • /
    • 2002
  • Porous concrete with a great deal of continuous porosity enables to contain water and to pass air freely through firmly hardened material, and allow necessary nutrients to reach roots of vegetation. Therefore, this paper deals with the voluntary properties and efficiency for planting of plant porous concrete. The results of experiment showed that void volumes were 17% to 31%, and compressive strength ranged between 80kgf/cm$^2$ and 180kgf/cm$^2$ when the ratio of the paste to aggregate was 0.3-0.5 When the aggregate size are 20-30mm, the paste to aggregate ratio is 0.3, and the length of Paranial Ryegress came up as 32cm. Ut supra the efficiency of planting goes through Paranial Ryegrass in result the length of plant are in compliance with void volume and aggregate size.

  • PDF