• 제목/요약/키워드: porous silicon

Search Result 342, Processing Time 0.03 seconds

플라즈마 분자선 에피택시 법으로 다공질 실리콘에 성장한 ZnO 박막의 열처리 온도에 따른 구조적 및 광학적 특성

  • Kim, Min-Su;Im, Gwang-Guk;Kim, So-A-Ram;Nam, Gi-Ung;Lee, Dong-Yul;Kim, Jin-Su;Kim, Jong-Su;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.247-247
    • /
    • 2011
  • 플라즈마 분자선 에피택시(plasma-assisted molecular beam epitaxy)법을 이용하여 다공질 실리콘(porous silicon)에 ZnO 박막을 성장하였다. 성장 후, 아르곤 분위기에서 10분 간 다양한 온도(500~700$^{\circ}C$)로 열처리하였다. 다공질 실리콘 및 열처리 온도가 ZnO 박막의 특성에 미치는 영향을 scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL)을 이용하여 분석하였다. 실리콘 기판에 성장된 ZnO 박막은 일반적은 섬구조(island structure)로 성장된 반면, 다공질 실리콘에 성장된 ZnO 박막은 산맥과 같은 구조(mountain range-like structure)로 성장되었다. 열처리 온도가 증가함에 따라 ZnO 박막의 grain size는 증가하였다. 실리콘 기판 위에 성장된 ZnO 박막은 wurtzite 구조를 나타내는 여러 개의 회절 피크가 관찰된 반면, 다공질 실리콘에 성장된 ZnO 박막은 c-축 배향성(c-axis preferred orientation)을 나타내는 ZnO (002) 회절 피크만이 나타났다. 다공질 실리콘에 성장된 ZnO 박막의 구조적 및 광학적 특성이 실리콘 기판에 성장된 ZnO 박막의 특성보다 우수하게 나타났다. 뿐만 아니라, 열처리 온도가 증가함에 따라 다공질 실리콘에 성장된 ZnO 박막의 PL 강도비(intensity ratio)가 실리콘 기판에 성장된 ZnO 박막의 강도비보다 월등하게 증가하였다.

  • PDF

Fabrication and Optical Characterization of Rugate-structured Polymer Replicas

  • Kim, Ji-Hoon;Park, Cheol-Young;Kim, Sung-Jin;Park, Jae-Hyun;Ko, Young-Chun;Woo, Hee-Gweon;Sohn, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2079-2082
    • /
    • 2007
  • Photonic crystals containing rugate structure result in a mirror with high reflectivity in a specific narrow spectral region and are prepared by applying a computer-generated pseudo-sinusoidal current waveform. Well defined 1-dimentional photonic polymer replicas showing a reflectivity at 534 nm have been successfully obtained by the removal of rugate porous silicon (PSi) template from the polystyrene composite film. XRD measurement indicates that the oxidized rugate PSi has been completely removed from the composite films. Polymer replicas exhibit a sharp resonance in the reflectivity spectrum. Optical characteristics of photonic polymer replicas indicate that the surface of polymer film has a negative structure of rugate PSi. These replicas are stable in aqueous solutions for several days without any degradation. The methods have been provided for the construction of photonic structures with polymers.

Development of alcohol gas sensors measurable at room temperature (상온에서 측정 가능한 음주 측정용 알코올 가스 센서)

  • Jeon, Byung-Hyun;Lee, Ju-Hyuk;Kim, Seong-Jean;Lee, Cheol-Jin;Choi, Bok-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3265-3267
    • /
    • 1999
  • Capacitance-type alcohol gas sensors using porous silicon (PS) layer as sensitive film were fabricated to measure low alcohol gas concentration. Though sensors using porous silicon layer have show high sensitivity by large internal surface area, there is still much room for improvement to measure low breath alcohol concentration especially at room temperature. In this work, to discuss the response properties against exposure to organic vapor for breath alcohol measurements on the basis of experimental results. we measured the variation of the capacitance for the range of 0 to 0.5% alcohol concentration, and observed the improvement of sensitivity by illumination of UV light. In addition, the effect of CO2 and N2 gases involved commonly in exhaling breath was estimated, and the same procedure against methanol vapor was executed to compare qualitatively with the capacitance characteristics by alcohol vapor.

  • PDF

Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가)

  • Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.

Mechanical Properties of Porous Reaction Bonded Silicon Carbide (반응소결 탄화규소 다공체의 기계적 특성)

  • Hwang, Sung-Sic;Park, Sang-Whan;Han, Jae-Ho;Han, Kyung-Sop;Kim, Chan-Mook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.948-954
    • /
    • 2002
  • Porous reaction bonded SiC with high fracture strength was developed using Si melt infiltration method for use of the support layer in high temperature gas filter that is essential to develop the next generation power system such as integrated gasification combined cycle system. The porosity and pore size of porous RBSC developed in this study were in the range of 32∼36% and 37∼90 ${\mu}m$ respectively and the maximum fracture strength of porous RBSC fabricated was 120 MPa. The fracture strength and thermal shock resistance of porous RBSC fabricated by Si melt infiltration were much improved compared to those of commercially available porous clay bonded SiC due to the formation of the strong SiC/Si interface between SiC particles. The characteristics of pore structure of porous RBSC was varied depending on the amounts of residual Si as Well as the size of SiC particle used in green body.

Effects of Annealing Temperature and Atmosphere on Properties of Porous Silicon (열처리 온도 및 분위기에 따른 다공질 실리콘의 구조 및 광학적 특성)

  • Choi, Hyun-Young;Yim, Kwang-Gug;Jeon, Su-Min;Cho, Min-Young;Kim, Ghun-Sik;Kim, Min-Su;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Leem, Jae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.581-586
    • /
    • 2010
  • The porous Si (PS) was annealed at various temperature in air, argon, and nitrogen atmosphere. Structural and optical properties of the annealed PS were investigated by scanning electron microscopy (SEM) and photoluminescence (PL). It is found that the shape of pore is changed from circle to channel as increasing annealing temperature which was annealed in air and argon atmosphere. In case of PS annealed in nitrogen atmosphere, the shape of pore is changed from channel to circle with increase annealing temperature from 600 to $800^{\circ}C$. The PL peak position is blue-shifted with increasing annealing temperature. As annealing temperature increases, the PL intensity of the PS annealed in argon is decreased but that of the PS annealed in nitrogen is increased. It might be due to the formation of Si-N bonds and it passivates the non-radiative centers which is Si dangling bonds on the surface of the PS.

Effect of the Surfactant Concentration on the Formation of Water Glass-based Porous Hollow Silica Microsphere (Porous한 물유리 기반 실리카 중공 미세구 형성에 대한 계면활성제 농도의 영향)

  • Lee, Jihun;Kim, Younghun;Kim, Taehee;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.79-83
    • /
    • 2021
  • In this study, hollow silica microspheres (HSM) of various sizes formed according to the concentration of surfactants using water glass as a precursor, which is advantageous for commercialization due to its lower unit cost compared to conventional silicon alkoxide (tetraethyl orthosilicate, TEOS) was synthesized. The physical properties of the silica hollow microspheres according to the concentration of surfactant were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda analyzers and field emission scanning electron microscopy. When porous water glass-based hollow silica spheres were prepared by adding a surfactant at an appropriate concentration, it was confirmed that excellent hollow silica spheres were formed with a specific surface area of 169 m2/g, an average particle size of 25.3 ㎛, and a standard deviation of 6.25.

Fabrication of n-ITO/p-PSL heterojunction type photodetectors and their characteristics (n-ITO/p-PSL 이종접합형 광검출 소자의 제조 및 그 특성)

  • Kim, Hang-Kyoo;Shin, Jang-Kyoo;Lee, Jong-Hyun;Song, Jae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.3-8
    • /
    • 1995
  • n-ITO/p-PSL heterojunction photodetector have been fabricated on the Si wafer by using ITO(indium tin oxide) and PSL(porous silicon layer). They were anodized selectively by using silicon nitride and Ni-Cr/Au and were passivated by using ITO as well as being isolated by using mesa structure. With white light from 0 to 3000 Lux, the photocurrent varied linearly with incident light intensity. The reverse characteristics of fabricated devices were very stable up to a bias voltage of -40V and dark current density was about $40nA/mm^{2}$. When the device was exposed by Xe lamp whose wavelength range from 400nm to 1100nm, the maximum photo responsivity was about 0.6A/W between 600 and 700nm. Variation of the characteristics of fabricated devices after 5 weeks was negligible.

  • PDF

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

The Effect of Mask Patterns on Microwire Formation in p-type Silicon (P-형 실리콘에서 마이크로 와이어 형성에 미치는 마스크 패턴의 영향)

  • Kim, Jae-Hyun;Kim, Kang-Pil;Lyu, Hong-Kun;Woo, Sung-Ho;Seo, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.418-418
    • /
    • 2008
  • The electrochemical etching of silicon in HF-based solutions is known to form various types of porous structures. Porous structures are generally classified into three categories according to pore sizes: micropore (below 2 nm in size), mesopore (2 ~ 50 nm), and macropore (above 50 nm). Recently, the formation of macropores has attracted increasing interest because of their promising characteristics for an wide scope of applications such as microelectromechanical systems (MEMS), chemical sensors, biotechnology, photonic crystals, and photovoltaic application. One of the promising applications of macropores is in the field of MEMS. Anisotropic etching is essential step for fabrication of MEMS. Conventional wet etching has advantages such as low processing cost and high throughput, but it is unsuitable to fabricate high-aspect-ratio structures with vertical sidewalls due to its inherent etching characteristics along certain crystal orientations. Reactive ion dry etching is another technique of anisotropic etching. This has excellent ability to fabricate high-aspect-ratio structures with vertical sidewalls and high accuracy. However, its high processing cost is one of the bottlenecks for widely successful commercialization of MEMS. In contrast, by using electrochemical etching method together with pre-patterning by lithographic step, regular macropore arrays with very high-aspect-ratio up to 250 can be obtained. The formed macropores have very smooth surface and side, unlike deep reactive ion etching where surfaces are damaged and wavy. Especially, to make vertical microwire or nanowire arrays (aspect ratio = over 1:100) on silicon wafer with top-down photolithography, it is very difficult to fabricate them with conventional dry etching. The electrochemical etching is the most proper candidate to do it. The pillar structures are demonstrated for n-type silicon and the formation mechanism is well explained, while such a experimental results are few for p-type silicon. In this report, In order to understand the roles played by the kinds of etching solution and mask patterns in the formation of microwire arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, dimethyl sulfoxide (DMSO), iso-propanol, and mixtures of HF with water on the structure formation on monocrystalline p-type silicon with a resistivity with 10 ~ 20 $\Omega{\cdot}cm$. The different morphological results are presented according to mask patterns and etching solutions.

  • PDF