Browse > Article
http://dx.doi.org/10.4313/JKEM.2010.23.8.581

Effects of Annealing Temperature and Atmosphere on Properties of Porous Silicon  

Choi, Hyun-Young (School of Nano Engineering, Inje University)
Yim, Kwang-Gug (School of Nano Engineering, Inje University)
Jeon, Su-Min (School of Nano Engineering, Inje University)
Cho, Min-Young (School of Nano Engineering, Inje University)
Kim, Ghun-Sik (School of Nano Engineering, Inje University)
Kim, Min-Su (School of Nano Engineering, Inje University)
Lee, Dong-Yul (SAMSUNG LED Co., Ltd.)
Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University)
Kim, Jong-Su (Department of Physics, Yeungnam University)
Leem, Jae-Young (School of Nano Engineering, Inje University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.23, no.8, 2010 , pp. 581-586 More about this Journal
Abstract
The porous Si (PS) was annealed at various temperature in air, argon, and nitrogen atmosphere. Structural and optical properties of the annealed PS were investigated by scanning electron microscopy (SEM) and photoluminescence (PL). It is found that the shape of pore is changed from circle to channel as increasing annealing temperature which was annealed in air and argon atmosphere. In case of PS annealed in nitrogen atmosphere, the shape of pore is changed from channel to circle with increase annealing temperature from 600 to $800^{\circ}C$. The PL peak position is blue-shifted with increasing annealing temperature. As annealing temperature increases, the PL intensity of the PS annealed in argon is decreased but that of the PS annealed in nitrogen is increased. It might be due to the formation of Si-N bonds and it passivates the non-radiative centers which is Si dangling bonds on the surface of the PS.
Keywords
Porous silicon; Thermal annealing; Scanning electron microscopy; Photoluminescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. H. Jung, S. Shih, and D. L. Kwong, J. Electrochem. Soc. 140, 3046 (1993).   DOI
2 A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956).   DOI
3 D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).   DOI
4 L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).   DOI
5 S. H. Jang, Y. D. Koh, J. H. Kim, J. H. Park, C. Y. Park, S. J. Kim, S. D. Cho, Y. C. Ko, and H. L. Sohn, Mater. Lett. 62, 552 (2008).   DOI
6 G. Lammel, S. Schweizer, and Renaud, Sens. Actuators, A 92, 52 (2001).   DOI
7 B. Unal and S. Bayliss, J. Porous Mat. 7, 295 (2000).   DOI
8 S.-J. Kim, S.-H. Lee, and B.-G. Choi, J. KIEEME 15, 963 (2002).
9 E. A. Petrova, K. N. Bogoslovskaya, L. A. Balagurov, and G. I. Kochoradze, Mater. Sci. Eng. B 9-70, 152 (2000).
10 Y. Zhao, D. Yang, D. Li, and M. Jiang, Appl. Surf. Sci. 252, 1065 (2005).   DOI
11 Y. Zhao, D. Li, S. Xing, W. Sang, D. Yang, and M. Jiang, J. Lumin. 128, 317 (2008).   DOI
12 T. Nakamura, H. Omoya, K. Sasaki, N. Azuma, and H. Mimura, Appl. Surf. Sci. 113/114, 145 (1997).   DOI
13 Y. Zhao, D. Li, W. Sang, and D. Yang, Solid-State Electron. 50, 1529 (2006).   DOI
14 R. Herino, A. Perio, K. Barla, and G. Bomchil, Mater. Lett. 2, 519 (1984).   DOI