• Title/Summary/Keyword: porous polymer

Search Result 450, Processing Time 0.038 seconds

Development of Pore-filled Polymer Electrolyte Membranes for Flexible Electrochromic Devices (유연한 전기변색 소자를 위한 세공충진 고분자 전해질 멤브레인의 개발)

  • Park, Hyeon-Jung;Lee, Ji-Hyeon;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.333-342
    • /
    • 2021
  • A flexible electrochromic device (ECD) is a promising technology that is expected to be applied in various fields such as smart windows. Polymer electrolyte is an important component that determines the bleaching-coloration performance and physical stability of flexible ECDs. In this study, a pore-filled polymer electrolyte membrane (PFPEM) with excellent dimensional stability was developed to effectively fabricate flexible ECDs and improve durability. Polyvinyl acetate, which has excellent adhesion, and polyethylene glycol, which can improve ionic conductivity, were filled in the pores of a porous substrate made of polyethylene, which is inexpensive and has excellent physical and chemical stability. The optimal lithium salt (LiTFSI) content of the prepared PFPEM was determined at about 27 wt%, and it was confirmed to possess excellent dimensional stability, adhesive strength, and ion conductivity close to that of conventional polymer electrolytes. Although the visible light transmittance was lowered by the use of the porous substrate, it was expected to act as an advantage in the colored state.

Fabrication Methods of Porous Ceramics and Their Applications in Advanced Engineering - Large Flat Precision Plate for Flat Display Industries

  • Matsumaru, Koji;Ishizaki, Kozo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.3.1-3.1
    • /
    • 2009
  • Normal sintering process of producing porous ceramics is not to sinter perfectly, i.e., stop sintering in middle-process. Our porous ceramic materials are a product of complete sintering. For example if one want to make a porous carborundum, raw carborundum powder is sintered at either lower temperatures than normal sintering temperature or shorter sintering periods than normal sintering time to obtain incompletely sintered materials, i.e., porous carborundum. This implies normally sintered porous ceramic materials can mot be used in high vacuum conditions due to dust coming out from uncompleted sintering. We could produce completely sintered porous ceramic materials. For example, we can produce porous carborundum material by using carborundum particles bonded by glassy material. The properties of this material are similar to carborundum. We could make quasi-zero thermal expansion porous material by using carborundum and particles of negative thermal expansion materials bonded by the glassy material. We apply to sinter them also by microwave to sinter quickly. We also use HIP process to introduce closed pores. We could sinter them in large size to produce $2.5m{\times}2.5m$ ceramic plate to use as a precision plate for flat display industries. This flat ceramic plate is the world largest artificial ceramic plate. Precision plates are basic importance to any advanced electronic industries. The produced precision plate has lower density, lower thermal expansivity, higher or similar damping properties added extra properties such as vacuum vise, air sliding capacity. These plates are highly recommended to use in flat display industries. We could produce also cylindrical porous ceramics materials, which can applied to precision roller for polymer film precision motion for also electronic industries.

  • PDF

Structure and Properties of Polymer Infiltrated Alumina Thick Film via Inkjet Printing Process

  • Jang, Hun-Woo;Koo, Eun-Hae;Hwang, Hae-Jin;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.207-207
    • /
    • 2008
  • Modern industry has focused on processing that produce low- loss dielectric substrates used complex micron-sized devices using tick film technologies such as tape casting and slip casting. However, these processes have inherent disadvantages fabricating high density interconnect with embedded passives for high speed communication electronic devices. Here, we have successfully fabricated porous alumina dielectric layer infiltrated with polymer solution by using inkjet printing process. Alumina suspensions were formulated as dielectric ink that were optimized to use in inkjet process. The layer was confirmed by field emission scanning electron microscope (FE-SEM) for measuring microstructure and volume fraction. In addition, the reaction kinetics and electrical properties were characterized by FT-IR and the impedance analyzer. The volume fraction of alumina in porous dielectric alumina layer is around 70% much higher than that in the conventional process. Furthermore, after infiltration on the dielectric layer using polymer resins such as cyanate ester. Excellent Q factors of the dielectric is about 200 when confirmed by impedance analyzer without any high temperature process.

  • PDF