• 제목/요약/키워드: porous nanobeam

검색결과 26건 처리시간 0.029초

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.121-133
    • /
    • 2017
  • This paper proposes an analytical solution method for free vibration of curved functionally graded (FG) nonlocal beam supposed to different thermal loadings, by considering porosity distribution via nonlocal elasticity theory for the first time. Material properties of curved FG beam are assumed to be temperature-dependent. Thermo-mechanical properties of porous FG curved beam are supposed to vary through the thickness direction of beam and are assumed to be temperature-dependent. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG structures. The rule of power-law is modified to consider influence of porosity according to even distribution. The governing equations of curved FG porous nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is used to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loadings with simply supported boundary condition. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality, porosity volume fractions, type of temperature rising, gradient index, opening angle and aspect ratio of curved FG porous nanobeam on the natural frequency are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams

  • Mirjavadi, Seyed Sajad;Afshari, Behzad Mohasel;Shafiei, Navvab;Hamouda, A.M.S.;Kazemi, Mohammad
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.415-426
    • /
    • 2017
  • The thermo-mechanical vibration behavior of two dimensional functionally graded (2D-FG) porous nanobeam is reported in this paper. The material properties of the nanobeam are variable along thickness and length of the nanobeam according to the power law function. The nanobeam is modeled within the framework of Timoshenko beam theory. Eringen's nonlocal elasticity theory is used to develop the governing equations. Using the generalized differential quadrature method (GDQM) the governing equations are solved. The effect of porosity, temperature distribution, nonlocal value, L/h, FG power indexes along thickness and length and are investigated using parametric studies.

On resonance behavior of porous FG curved nanobeams

  • She, Gui-Lin;Liu, Hai-Bo;Karami, Behrouz
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.179-186
    • /
    • 2020
  • In this paper, the forced resonance vibration of porous functionally graded (FG) curved nanobeam is examined. In order to capture the hardening and softening mechanisms of nanostructure, the nonlocal strain gradient theory is employed to build the size-dependent model. Using the Timoshenko beam theory together with the Hamilton principle, the equations of motion for the curved nanobeam are derived. Then, Navier series are used in order to obtain the dynamical deflections of the porous FG curved nanobeam with simply-supported ends. It is found that the resonance position of the nanobeam is very sensitive to the nonlocal and strain gradient parameters, material variation, porosity coefficient, as well as geometrical conditions. The results indicate that the resonance position is postponed by increasing the strain gradient parameter, while the nonlocal parameter has the opposite effect on the results. Furthermore, increasing the opening angle or length-to-thickness ratio will result in resonance position moves to lower-load frequency.

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine;R. Selvamani;F. Ebrahimi
    • Coupled systems mechanics
    • /
    • 제13권4호
    • /
    • pp.337-357
    • /
    • 2024
  • This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Boundary conditions effect for buckling analysis of porous functionally graded nanobeam

  • Bouhadra, Abdelhakim;Menasria, Abderrahmane;Rachedi, Mohamed Ali
    • Advances in nano research
    • /
    • 제10권4호
    • /
    • pp.313-325
    • /
    • 2021
  • This paper is concerned with the buckling behavior of 2D and quasi-3D problem of functionally graded nanobeam founded on high order shear deformation beams theory and made by two different types of porous distribution materials in Nano- and micro-scales. The used Quasi-3D formulation takes into account the transverse shear effect and uses only three variables. Both formulations do not include the correction factor that is required in the first shear deformation theory proposed by Timoshenko. Governing equations are derived using the principle of virtual work. Analytical resolutions for buckling of FG nanobeam are introduced under tow different boundary conditions, and the results obtained are compared to those proposed in literatures.

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation

  • Karami, Behrouz;Shahsavari, Davood;Nazemosadat, Seyed Mohammad Reza;Li, Li;Ebrahimi, Arash
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.349-362
    • /
    • 2018
  • Thermal buckling behavior of porous functionally graded nanobeam integrated with piezoelectric sensor and actuator based on the nonlocal higher-order shear deformation beam theory is investigated for the first time. Its material properties are assumed to be temperature-dependent and varying along the thickness direction according to the modified power-law rule. Note that the porosity with even type is considered herein. The equations of motion are obtained through Hamilton's principle. The influences of several parameters (such as type of temperature distribution, external electric voltage, material composition, porosity, small-scale effect, Ker foundation parameters, and beam thickness) on the thermal buckling of FG nanobeam are investigated in detail.

Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models

  • Ghandourh, Emad E.;Abdraboh, Azza M.
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.293-305
    • /
    • 2020
  • This article presented a nanoscale modified continuum model to investigate the free vibration of functionally graded (FG) porous nanobeam by using finite element method. The main novelty of this manuscript is presenting effects of four different porosity models on vibration behaviors of nonlocal nanobeam structure including size effect, that not be discussed before The proposed porosity models are, uniform porosity distribution, symmetric with mid-plane, bottom surface distribution and top surface distribution. The nano-scale effect is included in modified model by using the differential nonlocal continuum theory of Eringen that adding the length scale into the constitutive equations as a material parameter constant. The graded material is distributed through the beam thickness by a generalized power law function. The beam is simply supported, and it is assumed to be thin. Therefore, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Results demonstrate effects of porosity type, material gradation, and nanoscale parameters on the free vibration of nanobeam. The proposed model is effective in vibration analysis of NEMS structure manufactured by porous functionally graded materials.

Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory

  • Hadji, Lazreg;Avcar, Mehmet
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.281-293
    • /
    • 2021
  • This paper presents a new nonlocal Hyperbolic Shear Deformation Beam Theory (HSDBT) for the free vibration of porous Functionally Graded (FG) nanobeams. A new displacement field containing integrals is proposed which involves only three variables. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect and its account for shear deformation by a hyperbolic variation of all displacements through the thickness without using the shear correction factor. It has been observed that during the manufacture of Functionally Graded Materials (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the free vibration analysis of FG beams taking into account the influence of these imperfections is established. Four different porosity types are considered for FG nanobeam. Material characteristics of the FG beam are supposed to vary continuously within thickness direction according to a power-law scheme which is modified to approximate material characteristics for considering the influence of porosities. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio, and the porosity types on the dynamic responses of the nanobeam are discussed.