• Title/Summary/Keyword: porous medium

Search Result 295, Processing Time 0.026 seconds

Effect of relaxation time on generalized double porosity thermoelastic medium with diffusion

  • Mohamed I.A. Othman;Nehal T. Mansour
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.475-482
    • /
    • 2023
  • This paper studies the effect of the relaxation time on a two-dimensional thermoelastic medium which has a doubly porous structure in the presence of diffusion and gravity. The normal mode analysis is used to obtain the analytic expressions of the physical quantities, which we take the solution form in the exponential image. We have discussed a homogeneous thermoelastic half-space with double porosity with the effect of diffusion and gravity. The equations of generalized thermoelastic material with double porosity structure with one relaxation time have been developed. Moreover, the expressions of many physical quantities are explained. The general solutions, under specific boundary conditions of the problem, were found in some detail. In addition, numerical results are computed.

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

Characterization of depth filter media for gas turbine intake air cleaning

  • Park, Young Ok;Hasolli, Naim;Choi, Ho Kyung;Rhee, Young Woo
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.159-170
    • /
    • 2009
  • A depth filter medium was newly designed in order to achieve high collection of dust and low pressure drop in this work. Multilayer depth filter media consist of an upstream layer of highly porous structure which allows particles to pass through and to follow by one or more downstream layers to hold the particles inside the media. For each filter media, flat sheet and pleated module were made of newly developed depth filter media and filter media of commercial products. Commercial depth filter cartridge for gas turbine air intake cleaning were used as reference for filtration area and pleat geometry of pleated modules. This work attempts to evaluate and compare the newly developed depth filter medium and two commercial filter media in terms of filtration parameters such as air permeability, initial pressure drop, particle retention and pressure drop variation with dust loading. According to the close examination the newly developed depth filter showed better performance compared to the commercial depth filter media.

  • PDF

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

A New Groutability Criterion of Cement-based Grout with Consideration of Viscosity and Filtration Phenomenon (점도변화와 흡착현상을 고려한 시멘트계 그라우트재의 새로운 침투 기준)

  • Kim, Jong-Sun;Lee, In-Mo;Lee, Mun-Seon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.154-163
    • /
    • 2009
  • The groutability depends on the properties of the grout, its injection processes, and on the mechanical properties of the soil formation. During the process of pouring cement-based grouting into a porous medium, a variation with time occurs in the viscosity of grout suspension. In addition the particle filtration phenomenon will limit the expansion of the grouted zone because cement particles are progressively stagnant within the soil matrix. In this paper, a closed-form solution was derived by implementing the mass balance equations and the generalized phenomenological filtration law, which can be used to evaluate the deposition of cement-based grout in the soil matrix. The closed-form solution relevant to a particular spherical flow was modified by a step-wise numerical calculation, considering the variable viscosity caused by a chemical reaction, and the decrease in porosity resulting from grout particle deposition in the soil pores. A series of pilot-scale chamber injection tests was performed to verify that the developed step-wise numerical calculation is able to evaluate the injectable volume of grout and the deposition of grout particles. The results of the chamber injection tests concurred well with that of the step-wise numerical calculation. Based on the filtration phenomenon, a new groutability criterion of cement-based grout in a porous medium was proposed, which might facilitate a new insight in the design of the grouting process.

  • PDF

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

Anatomical Features Affecting Safranine Solution Permeability in Anthocephalus chinensis (Lam.) Rich. ex Walp

  • Ahmed, Sheikh Ali;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.4
    • /
    • pp.261-267
    • /
    • 2007
  • This report describes the wood anatomy and 1% safranine solution penetration depth in radial and longitudinal directions of Anthocephalus chinensis belonging to the family Rubiaceae native to Bangladesh. The wood of this species was mostly characterized by diffuse porous, vessel with simple perforation plate, vestured alternate intervessel pittings, relatively medium vessel elements and fiber, and nonseptate fiber with distinctly bordered pits at radial wall. The body ray cell was procumbent with 2 to over 4 rows of upright and square marginal cells. Sometimes, the rays with procumbent, square and upright cells were mixed. Latewood fiber was thin to thick walled while it was very thin walled in earlywood. Axial parenchyma was diffuse, vasicentric, 5-8 cells per parenchyma strand dominantly present. Liquid penetration depth was observed in radial and longitudinal directions at moisture level of 7.42%. Longitudinal penetration was found 6.3 times higher than radial penetration. The initial penetration rate of safranine solution was high, but gradually decreased during the course of time. Different anatomical features were found to be responsible for the variation of safranine solution penetration depth compared to Gmelina arborea.

  • PDF

A predicting model for thermal conductivity of high permeability-high strength concrete materials

  • Tan, Yi-Zhong;Liu, Yuan-Xue;Wang, Pei-Yong;Zhang, Yu
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • The high permeability-high strength concrete belongs to the typical of porous materials. It is mainly used in underground engineering for cold area, it can act the role of heat preservation, also to be the bailing and buffer layer. In order to establish a suitable model to predict the thermal conductivity and directly applied for engineering, according to the structure characteristics, the thermal conductivity predicting model was built by resistance network model of parallel three-phase medium. For the selected geometric and physical cell model, the thermal conductivity forecast model can be set up with aggregate particle size and mixture ratio directly. Comparing with the experimental data and classic model, the prediction model could reflect the mixture ratio intuitively. When the experimental and calculating data are contrasted, the value of experiment is slightly higher than predicting, and the average relative error is about 6.6%. If the material can be used in underground engineering instead by the commonly insulation material, it can achieve the basic requirements to be the heat insulation material as well.

Prediction of Permeability for Braided Preform (브레이드 프리폼의 투과율 계수 예측)

  • Youngseok Song;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.184-187
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional circular braided preform is critical to understand the resin transfer molding process of composites. The permeability can be predicted by considering resin flow through the multi-axial fiber structure. In this study, permeability tensor for a 3-D circular braided preform is calculated by solving a boundary problem of a periodic unit cell. Flow field through the unit cell is obtained by using a 3-D finite volume method (FVM) and Darcy's law is utilized to obtain permeability tensor. Flow analysis for two cases that a fiber tow is regarded as impermeable solid and permeable porous medium is carried out respectively. It is found that the flow within the intra-tow region of the braided preform is negligible if inter-tow porosity is relatively high but the flow through the tow must be considered when the porosity is low. To avoid checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity variation is proposed on the basis of analytic solutions. Permeability of the braided preform is measured through a radial flow experiment and compared with the permeability predicted numerically.

  • PDF