• Title/Summary/Keyword: porous matrix

Search Result 263, Processing Time 0.023 seconds

Effects of Matrix Material Particle Size on Mullite Whisker Growth

  • Hwang, Jinsung;Choe, Songyul
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.313-319
    • /
    • 2021
  • Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 ℃, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 ℃. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75 % when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.

A Study on Estimation Method for Physical Properties of Sound Absorbing Materials (다공성 재료의 물리적 성질 추정 방법에 대한 연구)

  • Kim, Yoon-Jae;Kang, Yeon-June;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.118-121
    • /
    • 2005
  • The acoustical performance of porous materials is determined by their seven or more macroscopic physical properties. However, it is not easy to measure all these properties in many cases. Furthermore, the measurement is compels engineers to spend much times. The effect of each property on the normal incidence absorption coefficient and normalized surface impedance was studied to estimate the properties of porous materials by numerical method. According to the investigation, Properties of porous materials are divided into several groups and estimated by each group. This paper is focused on the estimation procedure of porous materials by the numerical method.

  • PDF

In situ viscoelastic properties of insoluble and porous polysaccharide biopolymer dextran produced by Leuconostoc mesenteroides using particle-tracking microrheology

  • Jeon, Min-Kyung;Kwon, Tae-Hyuk;Park, Jin-Sung;Shin, Jennifer H.
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.849-862
    • /
    • 2017
  • With growing interests in using bacterial biopolymers in geotechnical practices, identifying mechanical properties of soft gel-like biopolymers is important in predicting their efficacy in soil modification and treatment. As one of the promising candidates, dextran was found to be produced by Leuconostoc mesenteroides. The model bacteria utilize sucrose as working material and synthesize both soluble and insoluble dextran which forms a complex and inhomogeneous polymer network. However, the traditional rheometer has a limitation to capture in situ properties of inherently porous and inhomogeneous biopolymers. Therefore, we used the particle tracking microrheology to characterize the material properties of the dextran polymer. TEM images revealed a range of pore size mostly less than $20{\mu}m$, showing large pores > $2{\mu}m$ and small pores within the solid matrix whose sizes are less than $1{\mu}m$. Microrheology data showed two distinct regimes in the bacterial dextran, purely viscous pore region of soluble dextran and viscoelastic region of the solid part of insoluble dextran matrix. Diffusive beads represented the soluble dextran dissolved in an aqueous phase, of which viscosity was three times higher than the growth medium viscosity. The local properties of the insoluble dextran were extracted from the results of the minimally moving beads embedded in the dextran matrix or trapped in small pores. At high frequency (${\omega}>0.2Hz$), the insoluble dextran showed the elastic behavior with the storage modulus of ~0.1 Pa. As frequency decreased, the insoluble dextran matrix exhibited the viscoelastic behavior with the decreasing storage modulus in the range of ${\sim}0.1-10^{-3}Pa$ and the increasing loss modulus in the range of ${\sim}10^{-4}-1\;Pa$. The obtained results provide a compilation of frequency-dependent rheological or viscoelastic properties of soft gel-like porous biopolymers at the particular conditions where soil bacteria produce bacterial biopolymers in subsurface.

An Experimental Analysis of Effective Thermal Conductivity of Porous Materials Using Structural Models (구조모델을 이용한 다공성 매질의 유효열전도도 분석)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • The effective thermal conductivity of porous materials is usually determined by porosity, water content, and the conductivity of the matrix. In addition, it is also affected by the internal structure of the materials such as the size, arrangement, and connectivity of the matrix-forming grains. Based on the structural models for multi-phase materials, thermal conductivities of soils and sands measured with varying the water content were analyzed. Thermal conductivities of dry samples were likely to fall in the region between the Maxwell-Eucken model with air as the continuous phase and the matrix as the dispersed phase ($ME_{air}$) and the co-continuous (CC) model. However, water-saturated samples moved down to the region between the $ME_{wat}$ model and the series model. The predictive inconsistency of the structural models for dry and water-saturated samples may be caused by the increase of porosity for water-saturated samples, which leads to decrease of connectivity among the grains of matrix. In cases of variably saturated samples with a uniform grain size, the thermal conductivity showed progressive changes of the structural models from the $ME_{air}$ model to the $ME_{wat}$ model depending on the water content. Especially, an abrupt increase found in 0-20% of the water content, showing transition from the $ME_{air}$ model to the CC model, can be attributed to change of water from the dispersed to continuous phase. On the contrary, the undisturbed soil samples with various sizes of grains showed a gradual increase of conductivity during the transition from the $ME_{air}$ model to the CC model.

Microstructure and Mechanical Properties of Amorphous Matrix Composite Reinforced with Tungsten Porous Foam (텅스텐 다공성폼 강화 Zr계 비정질 기지 복합재료의 미세조직과 기계적 성질)

  • Son, Chang-Young;Lee, Sang-Bok;Lee, Sang-Kwan;Kim, Choongnyun Paul;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2010
  • In the present study, a Zr-based amorphous alloy matrix composite reinforced with tungsten porous foam was fabricated without pores or defects by liquid pressing process, and its microstructures and mechanical properties were investigated. About 69 vol.% of tungsten foam was homogeneously distributed inside the amorphous matrix, although the matrix of the composite contained a small amount of crystalline phases. The compressive test results indicate that the composite was not fractured at one time after reaching the maximum compressive strength, but showed considerable plastic strain as the compressive load was sustained by tungsten foam. The tungsten foam greatly improved the strength (2764 MPa) and ductility (39.4%) of the composite by homogeneously dispersing the stress applied to the matrix. This was because the tungsten foam and matrix were simultaneously deformed without showing anisotropic deformation due to the excellent bonding of tungsten/matrix interfaces. These findings suggest that the liquid pressing process is useful for the development of amorphous matrix composites with improved strength and ductility.

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures

  • Pham, Van Hoi;Bui, Huy;Hoang, Le Ha;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Son;Ngo, Quang Minh
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.423-427
    • /
    • 2013
  • We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The principle of the sensor is a determination of the cavity-resonant wavelength shift caused by refractive index change of the nano-porous silicon multilayer cavity due to the interaction with liquids. We use the transfer matrix method (TMM) for the design and prediction of characteristics of microcavity sensors based on nano-porous silicon multilayer structures. The preparation process of the nano-porous silicon microcavity is based on electrochemical etching of single-crystal silicon substrates, which can exactly control the porosity and thickness of the porous silicon layers. The basic characteristics of sensors obtained by experimental measurements of the different liquids with known refractive indices are in good agreement with simulation calculations. The reversibility of liquid-phase sensors is confirmed by fast complete evaporation of organic solvents using a low vacuum pump. The nano-porous silicon microcavity sensors can be used to determine different kinds of organic fuel mixtures such as bio-fuel (E5), A92 added ethanol and methanol of different concentrations up to 15%.

A comparison study between the realistic random modeling and simplified porous medium for gamma-gamma well-logging

  • Fatemeh S. Rasouli
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1747-1753
    • /
    • 2024
  • The accurate determination of formation density and the physical properties of rocks is the most critical logging tasks which can be obtained using gamma-ray transport and detection tools. Though the simulation works published so far have considerably improved the knowledge of the parameters that govern the responses of the detectors in these tools, recent studies have found considerable differences between the results of using a conventional model of a homogeneous mixture of formation and fluid and an inhomogeneous fractured medium. It has increased concerns about the importance of the complexity of the model used for the medium in simulation works. In the present study, we have suggested two various models for the flow of the fluid in porous media and fractured rock to be used for logging purposes. For a typical gamma-gamma logging tool containing a 137Cs source and two NaI detectors, simulated by using the MCNPX code, a simplified porous (SP) model in which the formation is filled with elongated rectangular cubes loaded with either mineral material or oil was investigated. In this model, the oil directly reaches the top of the medium and the connection between the pores is not guaranteed. In the other model, the medium is a large 3-D matrix of 1 cm3 randomly filled cubes. The designed algorithm to fill the matrix sites is so that this realistic random (RR) model provides the continuum growth of oil flow in various disordered directions and, therefore, fulfills the concerns about modeling the rock textures consist of extremely complex pore structures. For an arbitrary set of oil concentrations and various formation materials, the response of the detectors in the logging tool has been considered as a criterion to assess the effect of modeling for the distribution of pores in the formation on simulation studies. The results show that defining a RR model for describing heterogeneities of a porous medium does not effectively improve the prediction of the responses of logging tools. Taking into account the computational cost of the particle transport in the complex geometries in the Monte Carlo method, the SP model can be satisfactory for gamma-gamma logging purposes.

Micro-Porous Ceramics Using directionally $MgAl_2O_4/MgO$ eutectic crystals

  • Lee, Jong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.229-233
    • /
    • 2005
  • Novel process was tried to obtain micro-porous ceramic body containing continuous pore channel. $MgAl_2O_4/MgO$ eutectic fibers and rods have been grown successfully by the micro-pulling-down method, and the microstructures and optical characterizations of grown crystals were performed. $MgAl_2O_4/MgO$ eutectic fibers of $0.3{\sim}1mm$ in diameter and about 500 mm in length, and the rods having 5 mm in diameter with approximately 60 mm in length have been grown with the $6{\sim}120mm/hr$ of growth speed. The eutectic fibers showed homogeneous microstructure in which MgO fiber aligned to the growth direction in the $MgAl_2O_4$ (spinel) matrix. The grown crystals looked semitransparency under naked eyes. Optical and orientational characterizations were performed. The second phase of MgO (periclase) was easily removed by selective etching with hydrochloric acid, and then porous bodies were obtained.

Refractive Indexes of Porous Thin Films Prepared From Organic-templated Polymethylsilsesquioxanes

  • Kim, Jung-Soo;Nam, Dae-Geun;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.305-308
    • /
    • 2014
  • Organosilyl-modified and star-shaped poly (${\varepsilon}$-caprolactone) (m-PCL) was prepared, and added to polymethylsilsesquioxane (PMSSQ), to make composites. The end groups of m-PCL are chemically similar to PMSSQ, and m-PCL mixed well with PMSSQ in the composite. Porous PMSSQ film was made by further calcination of the composite film at elevated temperature. m-PCL-templated PMSSQ and the as-prepared porous PMSSQ were structurally, optically, and thermally characterized in thin films. The chemical binding of m-PCL and PMSSQ effectively suppressed the phase separation of PMSSQ and m-PCL during the curing process. After calcination at elevated temperature, there remained many pores in the PMSSQ matrix. The refractive indices of the resulting porous PMSSQ thin films decreased with increase of the film porosities, depending on the initial m-PCL loadings.

Porous gelatin-based membrane as supports for impregnation of cells (세포함유용 지지체로서 다공성 젤라틴계 막)

  • 이영무;홍성란
    • Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2001
  • 본 논문은 인공 진피와 조직공학용 scaffold로 이용하기 위해 다공성 membrane로서 gelatin-based sponge의 효율성을 연구하였다. 불용성의 다공성 membrane은 1-ethyl-(3-3dimethylaminopropyl)carbodiimide(EDC)로 가교하여 제조하였다. Fourier-transformed infrared (FT-IR) spectroscopy, scanning electron microscopy(SEM) 그리고 Instron analysis로 다공성 membrane의 특성을 조사하였다. 다공성 membrane은 용적당 큰 표면적을 제공하는 micro porous한 구조를 가지고 있다. Gelatin/hyaluronic acid (HA) membrane의 공경크기는 40~200$\mu\textrm{m}$이다. HA의 첨가는 다공성 membrane의 기계적 강도와 세포부착능력에 영향을 미쳤다. Gelatin/HA 다공성 membrane의 압축강도는 collagen과 비슷하며, 세포배양과 인공진피 transplantation에 있어서의 충분한 기계적 강도를 가지고 있다. Fibroblasts를 함유한 진피기질을 제조하기 위해 직경 8mm의 다공성 membran에 4$\times$10(sup)5cells/membrane의 세포밀도로 fibroblast를 배양하였다. GH91 porous membrane에서의 fibroblast 부착성은 GH55 porous membrane에서보다 우수하였다. 삼차원 구조의 gelatin/HA membrane matrix에서의 fibroblast의 배양은 생체내 조건과 유사한 생리적 환경을 제공하였다.

  • PDF