• 제목/요약/키워드: porous ceramics

검색결과 268건 처리시간 0.025초

Fabrication of Porous Structure of BCP Sintered Bodies Using Microwave Assisted Synthesized HAp Nano Powder

  • Youn, Min-Ho;Paul, Rajat Kanti;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.475-476
    • /
    • 2006
  • Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having $150-180\;{\mu}m$ were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of $Ca^{2+}$ ion was observed in the sample sintered at $1000^{\circ}C$.

  • PDF

불가사리 소재 다공성 세라믹을 이용한 산성광산배수 내 중금속의 제거특성(I) - 회분식 실험을 통한 산성광산배수의 처리특성 (Removal Characteristics of Heavy Metals in Acid Mine Drainage (AMD) Using Porous Starfish Ceramics (I) - Treatment of AMD in a Batch Reactor System)

  • 이용환;임수빈
    • 한국지반환경공학회 논문집
    • /
    • 제15권12호
    • /
    • pp.15-24
    • /
    • 2014
  • 천연제올라이트와 불가사리를 목분과 함께 혼합 소성한 펠렛형 Zeolite-StarFish 세라믹(ZSF 세라믹)을 이용하여 산성광산배수 내 중금속의 제거특성 및 영향인자를 파악하고자 하였다. ZSF 세라믹에 의한 중금속의 제거반응은 초기 3시간까지 빠른 속도로 진행되었으며 높은 알칼리 상태를 나타내었다. 중금속 제거를 위한 ZSF 세라믹의 최적 소성온도는 $800{\sim}1,000^{\circ}C$로 파악되었으며 소성시간에 따른 중금속 제거효율의 변화는 거의 나타나지 않았다. ZSF 세라믹의 최적 투여농도는 1.0~1.2 %임을 알 수 있었고, 1.0 % 이상의 ZSF 세라믹의 투여농도 조건에서는 Pb 85.5 %를 제외한 Al, As, Cd, Cu, Fe, Mn, Zn 대부분의 중금속이 95 % 이상의 높은 제거효율을 나타내었다. 목분의 배합비가 증가할수록 중금속 제거효율은 증가하였으며 목분의 적정 배합비는 10 %로 파악되었다. 회분식 실험을 통해 불가사리 소재의 ZSF 세라믹은 산성광산배수 내 중금속을 효과적으로 제거할 수 있는 처리제임을 알 수 있었으며, 특히 목분을 첨가한 다공성 ZSF 세라믹을 통해서는 산성광산배수 내 중금속의 제거효율을 더욱 향상시킬 수 있었다.

서로 다른 물성치로 이루어진 다공 세라믹 연소기 속에서의 예혼합화염 연소에 대한 수치해석 연구 (Numerical Study of Premixed Combustion within a Porous Ceramic Burner of Different Ceramic Properties)

  • 임인권
    • 한국연소학회지
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1997
  • Premixed combustion within porous ceramic media is numerically studied to understand burning characteristics and to find best configurations for burner implementations. Among many parameters, critical to burner performance, flame location and extinction coefficient are selected as major parameters for this study. The flame structure and burner performance with respect to these two parameters are observed. In the study, it is found that the location of flame is the most important in porous burner operation since it affects the rate of heat transfer and flame structure. Stability of the flame within the porous ceramic burner is discussed with respect to the flame location. It is found that to obtain high radiative output, the flame should be located downstream section of the burner. But the flame is to be unstable at most of downstream section except near the exit plane. To overcome this problem, new porous ceramic burner, using different ceramic properties in one burner instead of single property ceramic, is made and tested. With a combination of ceramics of high extinction coefficient at upstream and another material of low extinction coefficient at downstream of the burner, the flame can be stabilized at wider region of the burner with higher radiative output compared to the original burner configuration.

  • PDF

산호 유래 실리콘 함유 다공성 수산화아파타이트의 합성 및 특성 분석 (Preparation and Characterization of Porous Hydroxyapatite Containing Silicon Derived from Natural Coral)

  • 김수룡;이윤주;송희;이종헌;이강식;김해중;김영희
    • 한국세라믹학회지
    • /
    • 제41권8호
    • /
    • pp.628-632
    • /
    • 2004
  • 생체친화성 인공골 개발을 위하여 해면골과 매우 유사한 기공구조를 갖는 천연 산호(CaCO$_3$, aragonite phase)를 수열처리하여 수산화아파타이트 다공체를 제조하였다. 생체 친화성을 증진시키기 위하여 산호를 수열 처리하는 과정에서 실리콘을 치환시키는 실험을 하였다. 수열합성과 solvothermal 방법을 반복적으로 사용하여 실리콘이 치환된 수산화아파타이트를 합성하였으며 이들의 각 온도에 따른 상변화 및 실리콘 농도를 XRD, ICP, EDS 등을 통하여 분석하였다. 분석결과로부터 실리콘이 수산화아파타이트 골격 내에 균일하게 분산되어 있음을 확인하였다.

Eco-friendly Self-cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water

  • Katsuki, Hiroaki;Choi, Eun-Kyong;Lee, Won-Jun;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • 한국세라믹학회지
    • /
    • 제55권2호
    • /
    • pp.153-159
    • /
    • 2018
  • Porous ceramic plates were prepared from Onggi clay and bamboo charcoal powder at 1100 and $1200^{\circ}C$ and their porous properties and water absorption, and the cooling effect of porous plates, were investigated to produce eco-friendly porous ceramics for a self-cooling system that relies on the evaporation of absorbed water. Porous properties were dependent on the particle size of charcoal powder pore forming additive and the firing temperature; properties were also found to be dependent on the total pore volume, average pore size and porosity, which had values of $0.103-0.243cm^3/g$, 0.81 - 2.56 mm and 20.9 - 38.2%, respectively, at $1100^{\circ}C$ and $0.04-0.18cm^3/g$, 0.33 - 2.03 mm and 10.8 - 30.9%, respectively, at $1200^{\circ}C$. Cooling temperature difference of flowing air parallel to surface of porous ceramic plates fired with two kinds of charcoal powder at $1100^{\circ}C$ was $3.5-3.6^{\circ}C$ at $26^{\circ}C$ and 60% of relative humidity in a closed box. Cooling temperature difference was dependent on the number of porous plates and the distance between porous plates. A simple and eco-friendly cooling system using porous ceramic plates fired from Onggi clay and charcoal powder was proposed.

Effect of Process Conditions on the Microstructure of Particle-Stabilized Al2O3 Foam

  • Ahmad, Rizwan;Ha, Jang-Hoon;Hahn, Yoo-Dong;Song, In-Hyuck
    • 한국분말재료학회지
    • /
    • 제19권4호
    • /
    • pp.278-284
    • /
    • 2012
  • $Al_2O_3$ foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, $Al_2O_3$ foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the $Al_2O_3$ particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the $Al_2O_3$ foam with open and closed-cell structure, cell size ranging from $20{\mu}m$ to $300{\mu}m$ having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at $1600^{\circ}C$ for 2 h in air.

마이크로셀룰라 경량 조습타일의 특성 고찰 (Investigation on the Properties of a Microcellular Light-Weighted Humidity Controlling Tile)

  • 송인혁;이은정;김해두;김영욱;윤달웅
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.404-411
    • /
    • 2011
  • The humidity controlling ceramic materials was developed by applying the phenomena of dew condensation in the capillary. It is said that the humidity range which human feels comfortable is from 40 to 70% in relative humidity. In this study, the ceramic tile using natural soils such as diatomite for interior wall was investigated. In particular, we had introduced novel processing routes for fabricating microcellular ceramics tile using hollow microsphere as a pore former. The microcellular pores in the humidity controlling ceramic materials showed the superior properties such as light-weight, heat insulation. The cell density was ${\sim}1.0{\times}10^9$ cells/$cm^3$ and density of sample was 0.65 g/$cm^3$ in the case of 1.71 wt% hollow microsphere content. Also, it is observed that the BET surface area and the pore volume of the sintered diatomite tile have the values of 40.92 $m^2$/g and 0.173 $cm^3$/g.

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체 (Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength)

  • 김규헌;김태림;김동현;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

Three Dimensionally Ordered Microstructure of Polycrystalline Zirconia Ceramics with Micro-Porosity

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.50-55
    • /
    • 2016
  • In order to make a highly ordered three-dimensionally macro-porous structure of zirconia ceramics, porogen precursors PMMA beads were prepared by emulsion polymerization using acrylic monomer. The monodisperse PMMA latex beads were closely packed by centrifugation as a porogen template for the infiltration of zirconium acetate solution. The mixed compound of PMMA and zirconium acetate was dried. According to the firing schedule, dry compacts of PMMA and zirconium acetate were calcined at $475^{\circ}C$ to obtain micro-, macro-, and meso- structures of polycrystalline zirconia with monodispersed porosity. Inorganic frameworks composed of $ZrO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $ZrO_2$ ceramics. The obtained $ZrO_2$ skeleton was calcined at $710^{\circ}C$. The 3DOM $ZrO_2$ skeleton showed color tuning in solutions such as deionized [DI] $H_2O$ and/or methanol. The monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM.