• Title/Summary/Keyword: porous carbon nanofiber

Search Result 19, Processing Time 0.023 seconds

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

Preparation of Porous Carbon Support Using Carbon Nanofiber (나노탄소섬유를 이용한 다공성 탄소담체의 제조와 반응 특성)

  • 김명수;정상원;우원준;임연수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.504-512
    • /
    • 1999
  • The high-quality carbon nanofibers were prepared by chemical vapor deposition of gas mixtures of CO-H2 and C3H8-H2 over Fe-Cu and Ni-Cu bimetallic catalysts. The yield and structure of carbon nanofiber produced were altered by the change of catalyst composition and reaction temperature. The high yields were obtained around 500$^{\circ}C$ with e-Cu catalyst and around 700-750$^{\circ}C$ with Ni-Cu catalyst and the relatively higher yields were obtained with the bimetallic catalyst containing 50-90% of Ni and Fe respectively in comparison with the pure metals. The carbon nanofibers produced over the Fe-Cu catalyst at around 500$^{\circ}C$ with the maximum yields had the highest surface ares of 160-200 m2/g around 650$^{\circ}C$ which was slightly lower than the temperature for maximum yields. In order to examine the characteristics of carbon nanofibers as catalyst support Ni and Co metals were supporte on the carbon nanofibers and CO hydrogenation reaction was performed with the catalysts. The particle size distribution of Ni and Co supported over the carbon nanofibers were 6-15 nm and the CO hydrogenation reaction rate with the carbon-nanofiber supported catalysts was much higher than that over the other supports.

  • PDF

Improvement in Cycle Characteristics using PVP Based Direct Carbon Coating During High-Rate Charge and Discharge of Li[Ni0.93Co0.07]O2 Nanofibers: Application for Lithium Secondary Batteries

  • Hae In Kim;Hyun Ju Jang;Thuy Thi Bich Tran;Jong-Tae Son;Eui Jeong Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.139-144
    • /
    • 2023
  • In this study, carbon-coated porous nanofibers were prepared via electrospinning and the performance of Li[Ni0.93Co0.07]O2 (NC) synthesized by electrospinning (E-NC) and co-precipitation (C-NC) was compared. E-NC had a discharge capacity of 206 mAh g-1 at 0.1C (17 mA/g), which is 10% higher than that of C-NC (189.2 mAh g-1). E-NC shows a high-rate performance of 118.32 mAh g-1 (61.7%) at 5C (850 mA/g), which is 50% higher than that of C-NC (78.22 mAh g-1 = 45.7%). Charge transfer of the carbon-coated porous nanofiber E-NC decreased by 35% compared to C-NC after 20 cycles as observed using electrochemical impedance spectroscopy. The results of this study show that the nanofiber structure with carbon coating shortens the Li-ion diffusion path, improves electrical conductivity, resulting in excellent rate performance.

Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors (전기 이중층 커패시터용 메조 다공성 탄소 나노섬유의 제조)

  • Lee, Do-Young;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.617-623
    • /
    • 2017
  • Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of $667m^2\;g^{-1}$, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of $87F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$, high-rate performance ($72F\;g^{-1}$ at a current density of $20.0A\;g^{-1}$), and good cycling stability ($92F\;g^{-1}$ after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.

Hydrogen Adsorption of PAN-based Porous Carbon Nanofibers using MgO as the Substrate

  • Jung, Min-Jung;Im, Ji-Sun;Jeong, Eui-Gyung;Jin, Hang-Kyo;Lee, Young-Seak
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.217-220
    • /
    • 2009
  • In this study, porous electrospun carbon fibers were prepared by electrospinning with PAN and $MgCl_2$, as a MgO precursor. MgO was selected as a substrate because of its chemical and thermal stability, no reaction with carbon, and ease of removal after carbonization by dissolving out in acidic solutions. $MgCl_2$ was mixed with polyacrylonitrile (PAN) solution as a precursor of MgO with various weight ratios of $MgCl_2$/PAN. The average diameter of porous electrospun carbon fibers increased from 1.3 to 3 ${\mu}m$, as the $MgCl_2$ to PAN weight ratio increased. During the stabilization step, $MgCl_2$ was hydrolyzed to MgOHCl by heat treatment. At elevated temperature of 823 K for carbonization step, MgOHCl was decomposed to MgO. Specific surface area and pore structure of prepared electrospun carbon fibers were decided by weight ratio of $MgCl_2$/PAN. The amount of hydrogen storage increased with increase of specific surface area and micropore volume of prepared electrospun carbon fibers.

The study on the manufacturing intermediary materials for the carbon nanofiber reinforced Cu matrix noncomposite (일방향 탄소나노섬유 강화 Cu 기지 나노복합재료용 중간재 제조에 관한 연구)

  • 백영민;이상관;엄문광
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.46-49
    • /
    • 2003
  • Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties, Until now, strengthening of the copper at toy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the at toy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conduct ing material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the copper matrix composites of high strength and electric conductivity In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process in order to manufacture the intermediary materials for the carbon nanofiber reinforced Cu matrix nanocomposite and align mechanism as well as optimized drawing process parameters are verified via experiments and numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of $10~20\mu\textrm{m}$ In length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber. Optimal parameter for drawing process was obtained by experiments and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc Lower reduction areas provides the less rupture of cu tube is not iced during the drawing process. Optimal die angle was between 5 degree and 12 degree. Relative density of carbon nanofiber embedded in the copper tube is higher as drawing diameter decrease and compressive residual stress is occurred in the copper tube. Carbon nanofibers are moved to the reverse drawing direct ion via shear force caused by deformation of the copper tube and alined to the drawing direction.

  • PDF

Methanol Electro-Oxidation Properties of Pt Electro-Catalysts Embedded by Porous Carbon Nanofiber Supports (다공성 탄소나노섬유 지지체에 담지된 백금촉매의 메탄올 산화 특성 연구)

  • Sin, Dong-Yo;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2015
  • To improve the methanol electro-oxidation in direct methanol fuel cells(DMFCs), Pt electrocatalysts embedded on porous carbon nanofibers(CNFs) were synthesized by electrospinning followed by a reduction method. To fabricate the porous CNFs, we prepared three types of porous CNFs using three different amount of a styrene-co-acrylonitrile(SAN) polymer: 0.2 wt%, 0.5 wt%, and 1 wt%, respectively. A SAN polymer, which provides vacant spaces in porous CNFs, was decomposed and burn out during the carbonization. The structure and morphology of the samples were examined using field emission scanning electron microscopy and transmission electron microscopy and their surface area were measured using the Brunauer-Emmett-Teller(BET). The crystallinities and chemical compositions of the samples were examined using X-ray diffraction and X-ray photoelectron spectroscopy. The electrochemical properties on the methanol electro-oxidation were characterized using cyclic voltammetry and chronoamperometry. Pt electrocatalysts embedded on porous CNFs containing 0.5 wt% SAN polymer exhibited the improved methanol oxidation and electrocatalytic stability compared to Pt/conventional CNFs and commercial Pt/C(40 wt% Pt on Vulcan carbon, E-TEK).

Study on Lithium Extraction Using Cellulose Nanofiber ( 셀룰로오스 나노 섬유를 활용한 리튬 흡착 및 추출 연구)

  • Raeil Jeong;Jinsub Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • The surge in demand for lithium is primarily fueled by the expanding electric vehicle market, the necessity for renewable energy storage, and governmental initiatives aimed at achieving carbon neutrality. This study proposes a straightforward method for lithium extraction utilizing cellulose nanofiber (CNF) via a vacuum filtration process. This approach yields a porous CNF film, showcasing its potential utility as a lithium extractor and indicator. Given its abundance and eco-friendly characteristics, cellulose nanofiber (CNF) emerges as a material offering both economic and environmental advantages over traditional lithium extraction techniques. Hence, this research not only contributes to lithium recovery but also presents a sustainable solution to meet the growing demand for lithium in energy storage technologies.

CoMn Oxide/Carbon-nanofiber Composite Electrodes for Supercapacitors (코발트망간 산화물/탄소나노섬유 복합전극의 수퍼케폐시터 특성)

  • Kim, Yong-Il;Yoon, Yu-Il;Ko, Jang-Myoun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.493-496
    • /
    • 2008
  • Composite electrodes consisting of $CoMnO_2$ and carbon nanofibers(vapor grown carbon nanofiber, VGCF) with high electrical conducivity($CoMnO_2$/VGCF) were prepared on a porous nickel foam substrate as a current collector and their supercapacitive properties were investigated using cyclic voltammetry in 1 M KOH aqueous solution. The $CoMnO_2$/VGCF electrode exhibited high specific capacitance value of 630 F/g at 5 mV/s and excellent capacitance retention of 95% after $10^4$ cycles, indicating that the used VGCF played the important roles in reducing the interfacial resistance in the composite electrode to improve supercapacitive performance.

Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application (전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체)

  • Yang, Kap Seung;Kim, Bo Hye
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.239-246
    • /
    • 2015
  • The hybridization of carbon nano-materials enhances the efficiency of each function of the resulting structure or composites. Also, the addition of non-carbon elements to nanomaterials modifies the electrochemical properties. Electrodes combining porous carbon nanofibers (CNFs) and metal oxides benefit from the combination of the double-layer capacitance of the CNFs and the pseudocapacitive character associated with the surface redox-type reactions. Consequently, they demonstrate superior supercapacitor performance in terms of high capacitance, high energy/power efficiency and high rate capability. This paper presents a comprehensive review of the latest advances made in the development and application of various metal oxide/CNF composites (CNFCs) to supercapacitor electrodes.