DOI QR코드

DOI QR Code

Study on Lithium Extraction Using Cellulose Nanofiber

셀룰로오스 나노 섬유를 활용한 리튬 흡착 및 추출 연구

  • Raeil Jeong (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Jinsub Choi (Department of Chemistry and Chemical Engineering, Inha University)
  • 정래일 (인하대학교 화학.화학공학 융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학 융합학과)
  • Received : 2024.02.14
  • Accepted : 2024.02.23
  • Published : 2024.02.29

Abstract

The surge in demand for lithium is primarily fueled by the expanding electric vehicle market, the necessity for renewable energy storage, and governmental initiatives aimed at achieving carbon neutrality. This study proposes a straightforward method for lithium extraction utilizing cellulose nanofiber (CNF) via a vacuum filtration process. This approach yields a porous CNF film, showcasing its potential utility as a lithium extractor and indicator. Given its abundance and eco-friendly characteristics, cellulose nanofiber (CNF) emerges as a material offering both economic and environmental advantages over traditional lithium extraction techniques. Hence, this research not only contributes to lithium recovery but also presents a sustainable solution to meet the growing demand for lithium in energy storage technologies.

Keywords

References

  1. U. Kamran, Y. J. Heo, J. W. Lee, S. J. Park, Chemically modified activated carbon-decorated with MnO2 nanocomposites for improving lithium adsorption and recovery from aqueous media, Journal of Alloys and Compounds, 794 (2019) 425-434. https://doi.org/10.1016/j.jallcom.2019.04.211
  2. U. Kamran, S. J. Park, Functionalized titanate nanotubes for efficient lithium adsorption and recovery from aqueous media, Journal of Solid State Chemistry, 283 (2020) 121157.
  3. V. Vivoda, M. D. Bazilian, A. Khadim, N. Ralph, G. Krame, Lithium nexus: energy, geopolitics, and socio-environmental impacts in mexico's sonora project, Energy Research & Social Science, 108 (2024) 103393.
  4. C. Liu, J. Lin, H. Cao, Y. Zhang, Z. Sun, Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review, Journal of Cleaner Production, 228 (2019) 801-813. https://doi.org/10.1016/j.jclepro.2019.04.304
  5. A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Lithium recovery from brine: recent developments and challenges, Desalination, 528 (2022) 115611.
  6. P. Xu, J. Hong, X. Qian, Z. Xu, H. Xia, X. Tao, Z. Xu, Q. Q. Ni, Materials for lithium recovery from salt lake brine, Journal of Materials Science, 56 (2021) 16-63. https://doi.org/10.1007/s10853-020-05019-1
  7. C. Chen, L. Hu, Nanocellulose toward advanced energy storage devices: structure and electrochemistry, Accounts of Chemical Research, 51 (2018) 3154-3165. https://doi.org/10.1021/acs.accounts.8b00391
  8. B. Thomas, M. C. Raj, A. K. B, R. M. H, J. Joy, A. Moores, G. L. Drisko, C. Sanchez, Nanocellulose, a versatile green platform: from biosources to materials and their applications, Chemical Reviews, 118 (2018) 11575-11625. https://doi.org/10.1021/acs.chemrev.7b00627
  9. V. Thakur, A. Guleria, S. Kumar, S. Sharma, K. Singh, Recent advances in nanocellulose processing, functionalization and applications: a review, Materials Advances, 2 (2021) 1872-1895. https://doi.org/10.1039/D1MA00049G
  10. Z. Karim, S. Claudpierre, M. Grahn, K. Oksman, A. P. Mathew, Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture, Journal of Membrane Science, 514 (2016) 418-428. https://doi.org/10.1016/j.memsci.2016.05.018
  11. A. Mautner, Y. Kwaw, K. Weiland, M. Mvubu, A. Botha, M. J. John, A. Mtibe, G. Siqueira, A. Bismarck, Natural fibrenanocellulose composite filters for the removal of heavy metal ions from water, Industrial Crops and Products, 133 (2019) 325-332. https://doi.org/10.1016/j.indcrop.2019.03.032
  12. P. R. Sharma, S. K. Sharma, T. Lindstrom, B. S. Hsiao, Nanocellulose-enabled membranes for water purification: perspectives, Advanced Sustainable Systems, 4 (2020) 1900114.
  13. L. Jabbour, C. Gerbaldi, D. Chaussy, E. Zeno, S. Bodoardo, D. Beneventi, Microfibrillated cellulose-graphite nanocomposites for highly flexible paperlike Li-ion battery electrodes, Journal of Materials Chemistry, 20 (2010) 7344-7347. https://doi.org/10.1039/c0jm01219j
  14. H. Lu, V. Guccini, H. Kim, G. S. Alvarez, G. Lindbergh, A. Cornell, Effects of different manufacturing processes on TEMPO-Oxidized carboxylated cellulose nanofiber performance as binder for flexible lithiumion batteries, ACS Applied Materials & Interfaces, 9 (2017) 37712-37720. https://doi.org/10.1021/acsami.7b10307
  15. H. Qin, K. Fu, Y. Zhang, Y. Ye, M. Song, Y. Kuang, S. H. Jang, F. Jiang, L. Cui, Flexible nanocellulose enhanced Li+ conducting membrane for solid polymer electrolyte, Energy Storage Materials, 28 (2020) 293-299. https://doi.org/10.1016/j.ensm.2020.03.019
  16. W. Wang, Z. Li, H. Huang, W. Li, J. Wang, Facile design of novel nanocellulosebased gel polymer electrolyte for lithiumion batteries application, Chemical Engineering Journal, 445 (2022) 136568.
  17. J. Gou, W. Liu, A. Tang, A renewable and biodegradable nanocellulose-based gel polymer electrolyte for lithium-ion battery, Journal of Materials Science, 55 (2020) 10699-10711. https://doi.org/10.1007/s10853-020-04667-7
  18. H. Kim, V. Guccini, H. Lu, G. S. Alvarez, G. Lindbergh, A. Cornell, Lithium ion battery separators based on carboxylated cellulose nanofibers from wood, ACS Applied Energy Materials, 2 (2019) 1241-1250. https://doi.org/10.1021/acsaem.8b01797
  19. H. Kim, U. Mattinen, V. Guccini, H. Liu, G. S. Alvarez, R. W. Lindstrom, G. Lindbergh, A. Cornell, Feasibility of chemically modified cellulose nanofiber membranes as lithium-ion battery separators, ACS Applied Materials & Interfaces, 12 (2020) 41211-41222. https://doi.org/10.1021/acsami.0c08820
  20. J. Sheng, T. Chen, R. Wang, Z. Zhang, F. Hua, R. Yang, Ultra-light cellulose nanofibril membrane for lithium-ion batteries, Journal of Membrane Science, 595 (2020) 117550.
  21. J. Gou, W. Liu, A. Tang, A novel method to prepare a highly porous separator based on nanocellulose with multiscale pore structures and its application for rechargeable lithium ion batteries, Journal of Membrane Science, 639 (2021) 119750.
  22. J. H. Kim, D. Lee, Y. H. Lee, W. Chen, S. Y. Lee, Nanocellulose for energy storage systems: beyond the limits of synthetic materials, Advanced Materials, 31 (2019) 1804826.
  23. G. Jacucci, L. Schertel, Y. Zhang, H. Yang, S. Vignolini, Light management with natural materials: from whiteness to transparency, Advanced Materials, 33 (2021) 2001215.
  24. T. Zelenka, T. Horikawa, D. D. Do, Artifacts and misinterpretations in gas physisorption measurements and characterization of porous solids, Advances in Colloid and Interface Science, 311 (2023) 102831.
  25. Gautam, R. P. Sah, S. Sahoo, A review on adsorption isotherms and kinetics of CO2 and various adsorbent pairs suitable for carbon capture and green refrigeration applications, Sadhana, 48 (2023) 27.
  26. M. E. Achaby, N. E. Miri, H. Hannache, S. Gmouh, V. Trabadelo, A. Aboulkas, H. B. Youcef, Cellulose nanocrystals from miscanthus fibers: insights into rheological, physico-chemical properties and polymer reinforcing ability, Cellulose, 25 (2018) 6603-6619. https://doi.org/10.1007/s10570-018-2047-1
  27. B. Soni, E. B. Hassan, B. Mahmoud, Chemical isolation and characterization of different cellulose nanofibers from cotton stalks, Carbohydrate Polymers, 134 (2015) 581-589. https://doi.org/10.1016/j.carbpol.2015.08.031
  28. C. Chuensangjun, K. Kanomata, T. Kitaoka, Y. Chisti, S. Sirisansaneeyakul, Surface-modified cellulose nanofibers-graft-poly(lactic acid)s made by ringopening polymerization of l-lactide, Journal of Polymers and the Environment, 27 (2019) 847-861. https://doi.org/10.1007/s10924-019-01398-y
  29. E. J. Kim, X. Yue, J. T. S. Irvine, A. R. Armstrong, Improved electrochemical performance of LiCoPO4 using ecofriendly aqueous binders, Journal of Power Sources, 403 (2018) 11-19.