• 제목/요약/키워드: porous block

검색결과 71건 처리시간 0.025초

고로슬래그를 대량 활용한 비정질 금속 섬유보강 투수블럭의 시제품 성능평가 (Performance Evaluation of Trial Product of Amorphous Metallic Fiber Reinforced Porous Block Using High Volume Blast Furnace Slag Powder)

  • 김도빈;김영욱;김성진;김혜정;정수빈;최세진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.81-82
    • /
    • 2017
  • This study analyzed the compressive and flexural strength characteristics and the permeability coefficient of the trial product of amorphous metallic fiber reinforced porous block using high volume blast furnace slag powder.

  • PDF

Wind loads for high-solidity open-frame structures

  • Amoroso, Samuel D.;Levitan, Marc L.
    • Wind and Structures
    • /
    • 제14권1호
    • /
    • pp.1-14
    • /
    • 2011
  • Open frame structures, such as those commonly found in industrial process facilities, are often densely occupied with process related equipment. This paper presents a method for estimating wind loads for high-solidity open frame structures that differs from current approaches, which accumulate wind load contributions from various individual structure components. The method considers the structure as a porous block of arbitrary plan dimension that is subject to wind from any direction. The proposed method compares favorably with wind tunnel test results for similar structures. The possibility of defining an upper bound force coefficient is also discussed.

Fabrication of Conducting Polymer Nanowires using Block Copolymer Nano-porous Templates for Photovoltaic Device

  • Lee, Jeong-In;Yu Jae-Woong;Kim, Jin-Kon;Russell Thomas P.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.312-312
    • /
    • 2006
  • Block copolymers with well-defined nanoscopic structures have recently gained much attention for their potential uses as functional nanostructures. Here, we show that nanoporous templates made from polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) satisfy a novel design concept. At first, arrays of nanoscopic cylindrical microdomains oriented normal to the surface can easily be prepared. Then, we fabricated ultra high density arrays of conducting polymer as poly(pyrrole) (Ppy) and poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires with diameters of $25{\sim}40\;nm$ on the ITO glass by electropolymerization of the monomers inside nanoholes. These high density arrays of conducting polymer nanowires could be used as P-type materials for photovoltaic devices.

  • PDF

Properties of Polysiloxane Coated Borosilicate Lining Blocks

  • Song, Jeongho;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.525-529
    • /
    • 2017
  • To improve the thermal resistance of a porous borosilicate lining block, we prepared and applied polysiloxane-fumed silica-ethanol slurry on top of the block and fired the coating layer using a torch for 5 minutes at $800^{\circ}C$. We conducted magnified characterizations using a microscope and XRD analysis to observe phase transformations, and TGA-DTA analysis to determine the thermal resistance. Thermal characterizations showed improved heat resistance with relatively high polysiloxane content slurry. Cross-sectional optical microscope observation showed less melting near the surface and decreased pore formation area with higher polysiloxane content slurry. XRD analysis revealed that the block and coating layer were amorphous phases. TGA-DTA analysis showed an endothermic reaction at around $550^{\circ}C$ as the polysiloxane in the coating layer reacted to form SiOC. Therefore, coating polysiloxane on a borosilicate block contributes to preventing the melting of the block at temperatures above $800^{\circ}C$.

저수형 잔디블록 저수조 내 충진재료에 따른 저수량 및 초종별 증발산량 (Volume of Water Storage and Evapotranspiration by Inserted Materials at a Reservoir of Porous Grass Block)

  • 한승호;최준수;양근모;양병이;강진형;김원태
    • 한국조경학회지
    • /
    • 제34권5호
    • /
    • pp.76-83
    • /
    • 2006
  • The purpose of this study was to investigate the performance of porous grass block. For the investigation, Festuca arundinacea and Zoysia japonica 'Zenith' were planted, and the volume of evapotranspiration and remains were examined based on different materials in the water tank in the experiment of Festuca arundinacea, the volume of water storage of treatment with perlite ($10.84{\iota}/m^2$) was higher than that with drainage ($7l/m^2$). The difference between the two was $3.84/m^2$. The drainage treatment without water storage capacity showed the higher degree of dryness in turf grass. The volume of evapo-transpiration of treatment with perlite was the highest (21.57mm/week). The volume of evapotranspiration of treatment with sand was 19.57mm/week, and with treatment with drainage was 18.24mm/week. Based on the measured volume of daily evapotranspiration of $2.60{\sim}3.08mm\;d^{-1}$, it was determined that the unit with water storage capacity would store water of one to two days usage compared to unite without such storage capacity. In the experiment of Zoysia japonica 'Zenith', the volume of water storage of treatment with perlite was $10.77l/m^2$ which was similar to the former experiment. The volume of evapotranspiration of treatment with perlite and sand were 21.64mm/week and 20.64mm/week, respectively. In case of airtight water tank, the volume was measured as 22.06mm/week. Each treatment has no notable difference in the volume of evapotranspiration. In conclusion, from the investigation in this study, porous grass block with water tank was found to be effective in plant growth under low irrigation. As the ecological area ratio and vegetated porous pavement have became more emphasized, additional study of rain infiltration and reservoir effect are needed in the future.

Ion-stuffing방법에 의한 GRIN glass의 제조와 특성 (Characteristics and Fabrication of GRIN glass by ion-stuffing method)

  • 진영훈;한덕희;이병철;류봉기
    • 한국표면공학회지
    • /
    • 제34권3호
    • /
    • pp.240-246
    • /
    • 2001
  • The possibility of using a glass block with the composition of sodium borosilicate as starting materials for GRIN glass was examined from the view points of the phase separation of the matrix glass, the effects of leaching and the heating conditions for a porous structure, and the change in the refractive index. Glass specimens with similar compositions were prepared in the form of porous glass using a phase-separation technique. An examination of the heating and leaching conditions and the microstructure dependence of these conditions was made.; Specimens with porous structure were obtained when the heat treatment and leaching conditions were fixed at $540^{\circ}C$ for 30hrs and in a 0.3N$ H_2$$SO_4$ solution at $100^{\circ}C$, respectively. The resultant specimens had some important features on the GRIN glass.; the depth of the gradient and the change in refractive index (Δn) were 4mm and 0.015~0.02, respectively.

  • PDF

다공성 필터에서의 여과 분진층 비저항 연구 (Specific Resistance (K2´) of Dust Layer Deposited on Porous Media)

  • 이선희;이경미;조영민
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.371-380
    • /
    • 2004
  • In the dust separation by using porous filter media, the structure of dust layer deposited on the filter surface of filter medium directly affects the effective filtration. The present study has investigated the specific resistance (K$_2$') of the dust layer and its porosity ($\varepsilon$$_{c}$) for three different filters; FA composite filter, metal fiber filter and stainless filter. The specific resistance (K$_2$') increased and at the same time the cake porosity ($\varepsilon$$_{c}$) decreased with the increase of filtration velocity, possibly due to the compressible effect of dust layer. However, under the low dust concentration, subsequent dust particles would block the open channels through the layer resulting in high specific resistance of the layer. The FA composite filter among three filters was shown to be the most effective filter for dust cake filtration at low filtration velocities less than 0.1 m/s for an approximate dust concentration of 5 g/㎥.

이형 콘크리트 블록의 강도 평가방법에 관한 연구 (Development of A Strength Test Method for Irregular Shaped Concrete Block Paver)

  • 임무광;박대근;류성우;조윤호
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • 정연식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF