• Title/Summary/Keyword: porous anodic alumina

Search Result 57, Processing Time 0.022 seconds

Fabrication and Magnetic Properties of Co Nanostructures in AAO Membranes

  • Jung, J.S.;Malkinski, L.;Lim, J.H.;Yu, M.;O'Connor, C.J.;Lee, H.O.;Kim, E.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.758-760
    • /
    • 2008
  • Nanoporous AAO (Anodic Aluminum Oxide) membranes have many advantages as a template for variety of magnetic materials. Materials can be embedded into the pores by electrodeposition, sputtering or magnetic-field-assisted infiltration of magnetic nanoparticles. This work focuses on the fabrication of the magnetic structures in the AAO templates by electrodeposition. Our method allows the controlled growth of Co nanostructures within the porous alumina membrane in the form of dots, rods and long wires. The shape of Co nanostructures has been investigated by field emission scanning electron microscope (FESEM). The magnetic hysteresis loops of Co nanostructures were measured using SQUID at 5 K and 300 K. The magnetic properties of the Co nanostructures are proportional to their aspect ratios and can be controlled by changing the aspect ratios.

Aluminum Oxide Photonic Crystals Fabricated on Compound Semiconductor (화합물 반도체 기판 위에 제작된 산화 알루미늄 광결정 특성)

  • Choi, Jae-Ho;Kim, Keun-Joo;Jung, Mi;Woo, Duk-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.77-78
    • /
    • 2006
  • We fabricated photonic crystals on GaAs and GaN substrates. After anodizing the aluminium thin film in electrochemical embient, the porous alumina was implemented to the mask for reactive ion beam etching process of GaAs wafer. And photonic crystals in GaN wafer were also fabricated using electron beam nano-lithography process. The coated PMMA thin film with 200 nm-thickness on GaN surface was patterned with triangular lattice and etched out the GaN surface by the inductively coupled plasma source. The fabricated GaAs and GaN photonic crystals provide the enhanced intensities of light emission for the wavelengths of 858 and 450 nm, respectively. We will present the detailed dimensions of photonic crystals from SEM and AFM measurements.

  • PDF

Fabrication of Hexagonally Assembled Gold Nonodots Based on Anodization of Aluminum (알루미늄 양극산화를 이용한 육각구조로 규칙적으로 배열된 금 나노구조 제조)

  • Lee, Joon Ho;Lee, Han Sub;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.191-194
    • /
    • 2009
  • Porous alumina prepared by anodization has been widely studied since it shows very regular nanostructures at inexpensive prices. In this article, porous alumina is obtained by anodization of aluminum in the oxalic acid. After the first formed oxide is selectively removed from the aluminum substrate, the hexagonal nanostructures on the fresh aluminum are converted to nanodots by the second anodization in boric acid. Nanodots are arrayed in the convex of the hexagonal nanostructures. The optimization condition for the fabrication of nanodots with a height of 20 nm is investigated in detail. Subsequently, a gold film is deposited on the nanodots, resulting in the formation of gold nanodots arrays which are probably interesting substrate for biosensor applications.

Observation of Diverse Aluminum Oxide Structures in a Phosphoric Acid Solution according to the Applied Anodization Voltage (인산용액에서 양극산화 인가전압에 따른 알루미늄 산화피막 성장 관찰)

  • Jeong, Chanyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • To date, porous alumina structures have been implemented by electrochemical anodization technique. The anodizing methods can easy to make a porous aluminum oxide film with a regular arrangement, but oxide film with complex structure type such as pillar-on-pore is relatively difficult to implement. Therefore, this study aims to observe the change of anodized oxide pore size, thickness, and structure in a phosphoric acid solution according to applied anodization voltage conditions. For the implementation of hybrid composite oxide structures, it is possible to create by modulating anodization voltage. The experimental conditions were performed at the applied anodization voltage of 100 V and 120 V in 10% phosphoric acid solution, respectively. The experimental results were able to observe the structure of oxides in the form of porous and composite structures (pillar-on-pore), depending on each condition.

Capacitance Properties of Nano-Structure Controlled Alumina on Polymer Substrate (폴리머 기판위에 형성된 나노구조제어 알루미나의 캐패시터 특성)

  • Jung, Seung-Won;Min, Hyung-Sub;Han, Jeong-Whan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • Embedded capacitor technology can improve electrical perfomance and reduce assembly cost compared with traditional discrete capacitor technology. To improve the capacitance density of the $Al_2O_3$ based embedded capacitor on Cu cladded fiber reinforced plastics (FR-4), the specific surface area of the $Al_2O_3$ thin films was enlarged and their surface morphologies were controlled by anodization process parameters. From I-V characteristics, it was found that breakdown voltage and leakage current were 23 V and $1{\times}10^{-6}A/cm^2$ at 3.3 V, respectively. We have also measured C-V characteristics of $Pt/Al_2O_3/Al/Ti$ structure on CU/FR4. The capacitance density was $300nF/cm^2$ and the dielectric loss was 0.04. This nano-porous $Al_2O_3$ is a good material candidate for the embedded capacitor application for electronic products.

Fabrication of Oxide Thin Films Using Nanoporous Substrates (나노기공성 기판을 사용한 산화물박막의 제조)

  • Park, Yong-Il;Prinz, Fritz B.
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.900-906
    • /
    • 2004
  • Solid oxide fuel cells have a limitation in their low-temperature application due to the low ionic conductivity of electrolyte materials and difficulties in thin film formation on porous gas diffusion layer. These problems can be solved by improvement of ionic conductivity through controlled nanostructure of electrolyte and adopting nanoporous electrodes as substrates which have homogeneous submicron pore size and highly flattened surface. In this study, ultra-thin oxide films having submicron thickness without gas leakage are deposited on nanoporous substrates. By oxidation of metal thin films deposited onto nanoporous anodic alumina substrates with pore size of $20nm{\sim}200nm$ using dc-magnetron sputtering at room temperature, ultra-thin and dense ionic conducting oxide films with submicron thickness are realized. The specific material properties of the thin films including gas permeation, grain/gran boundaries formation, change of crystalline structure/microstructure by phase transition are investigated for optimization of ultra thin film deposition process.

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF