Browse > Article
http://dx.doi.org/10.4191/KCERS.2004.41.12.900

Fabrication of Oxide Thin Films Using Nanoporous Substrates  

Park, Yong-Il (School of Materials and System Engineering, Kumoh National Institute of Technology)
Prinz, Fritz B. (Department of Mechanical Engineering, Stanford University)
Publication Information
Abstract
Solid oxide fuel cells have a limitation in their low-temperature application due to the low ionic conductivity of electrolyte materials and difficulties in thin film formation on porous gas diffusion layer. These problems can be solved by improvement of ionic conductivity through controlled nanostructure of electrolyte and adopting nanoporous electrodes as substrates which have homogeneous submicron pore size and highly flattened surface. In this study, ultra-thin oxide films having submicron thickness without gas leakage are deposited on nanoporous substrates. By oxidation of metal thin films deposited onto nanoporous anodic alumina substrates with pore size of $20nm{\sim}200nm$ using dc-magnetron sputtering at room temperature, ultra-thin and dense ionic conducting oxide films with submicron thickness are realized. The specific material properties of the thin films including gas permeation, grain/gran boundaries formation, change of crystalline structure/microstructure by phase transition are investigated for optimization of ultra thin film deposition process.
Keywords
Solid oxide fuel cell; Thin film; Nanoporous substrate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gaukler, 'Fabrication of Thin Electrolytes for SecondGeneration Solid Oxide Fuel Cells,' Solid State Ionics, 131 79-96 (2000)   DOI   ScienceOn
2 Y Jiang and A. V. Virkar, 'A High Performance, AnodeSupported Solid Oxide Fuel Cell Operating on Direct Methanol,' J. Electrochem. Soc., 148 [7] A706-A09 (2001)   DOI   ScienceOn
3 B. Zhu, 'Advantages of Intermediate Temperature Solid Oxide Fuel Cells for Tractionary Applications,' J. Power Sources, 93 82-6 (2001)   DOI   ScienceOn
4 R. Doshi, V. L. Richards, J. D. Carter, X. Wang, and M. Krumpelt, 'Development of Solid-Oxide Fuel Cells that Operate at $500^{\circ}C, J. Electrochem. Soc., 146 [4] 1273-78 (1999)   DOI   ScienceOn
5 B. C. H. Steele, 'Materials for IT-SOFC Stacks, 35 Years R&D: The Inevitability of Gradualness,' Solid State Ionics, 134 3-20 (2000)   DOI   ScienceOn
6 J. Schoonman, J. P. Dekker, J. W. Briers, and N. J. Kiwiet, 'Electrochemical Vapor Deposition of Stabilized Zirconia and Interconnection Materials for Solid Oxide Fuel Cells,' Solid State Ionics, 46 [3-4] 299-308 (1991)   DOI   ScienceOn
7 L. S. Wang and S. A. Barnett, 'Sputter-Deposited Mediumtemperature Solid Oxide Fuel Cells with Multi-Layer Electrolyte,' Solid State Ionics, 61 273-76 (1993)   DOI   ScienceOn
8 X. Changrong, C. Huaqiang, W. Hong, Y Pinghua, M. Guangyao, and P. Dingkun, 'Sol-Gel Synthesis of Yttria Stabilized Zirconia Membranes through Controlled Hydrolysis of Zirconium Alkoxide,' J. Membrane Sci., 162 181-88 (1999)   DOI   ScienceOn
9 G. Koren, E. Polturak, B. Fisher, D. Cohen, and G. Kimel, 'Highly Oriented As-Deposited Superconducting Laser Ablated Thin Films of $Y_1Ba_2Cu_3O_{7-\delta} on SrTiO_{3,}$ Zirconia, and Si Substrates,' Appl. Phys. Lett., S3 2330-32 (1998)
10 N. Wakiya, T. Yamada, K. Shinozaki, and N. Mizutani,'Heteroepitaxial Growth of $CeO_2$ Thin Film on Si(00I) with an Ultra Thin YSZ Buffer Layer,' Thin Solid Films, 371 211-17 (2000)   DOI   ScienceOn
11 S. Horita, H. Nakajima, and T. Kuniya, 'Improvement of the Electrical Properties of Heteroepitaxial Yttria-Stabilized Zirconia (YSZ) Films on Si Prepared by Reactive Sputtering,' Vacuum, S9 390-96 (2000)
12 M. Hartmanova, K. Gmukova, M. Jergel, I. Thurzo, F. Kundracik, and M. BruneI, 'Structural and Electrical Properties of Double-Layer Cerial/Yttria Stabilized Zirconia Deposited on Silicon Substrate,' Solid State Ionics, 119 85-90 (1999)   DOI   ScienceOn
13 JCPDS-ICDD file, Nos. 30-1468
14 J. Van Herle, R. Ihringer, N. M. Sammes, G. Tompsett, K. Kendall, K. Yamada, C. Wen, T. Kawada, M. Ihara, and J. Mizusaki, 'Concept and Technology of SOFC for Electric Vehicles,' Solid State Ionics, 132 333-42 (2000)   DOI   ScienceOn
15 H. Masuda, F. Hasegawa, and S. Ono, 'Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid,' J. Electrochem. Soc., 144 Ll27 (1997)   DOI
16 H. Bolt, F. Koch, J. L. Rodet, D. Karpov, and S. Menzel, $ Coatings Deposited by Filtered Vacuum Arc-Characterization of High Temperature Properties,' Suif. Coat. Tech., 116-119 956-62 (1999)   DOI   ScienceOn
17 M. F. Ashby, 'Materials Selection in Mechanical Design,' p. 389, Butterworth-Heinmann, Oxford, 1996
18 A. Atkinson and A. Seluk, 'Mechanical Behaviour of Ceramic Oxygen Ion-Conducting Membranes,' Solid State Ionics, 134 59-66 (2000)   DOI   ScienceOn
19 H. Nafe, 'Fast Ion Transport in Solids,' Kluwer Academic Publishers, Netherlands, 327-336, 1993
20 I. Kosacki, T. Suzuki, V. Peterovsky, and H. U. Anderson, 'Electrical Conductivity of Nanocrystalline Ceria and Zirconia Thin Films,' Solid State Ionics, 136 1225-33 (2000)   DOI   ScienceOn
21 C. Xia, S. Zha, W. Yang, R. Peng, D. Peng, and G. Meng, 'Preparation of Yttria Stabilized Zirconia Membranes on Porous Substrates by a Dip-Coating Process,' Solid State Ionics, 133 287-94 (2000)   DOI   ScienceOn
22 H. L. Tuller, 'Ionic Conduction in Nanocrystalline Materials,' Solid State Ionics, 131 143-57 (2000)   DOI   ScienceOn
23 N. Sata, K. Eberman, K. Eberl, and J. Maler, 'Mesoscopic Fast Ion Conduction in Nanometer-Scale Planar HeteroStructures,' Nature, 408 946-49 (2000)   DOI   ScienceOn
24 A. F. Jankowski and J. P. Hayes, 'Reactive Sputter Deposition of Yttria-Stabilized Zirconia,' Suif. Coat. Tech., 7677 126-31 (1995)
25 K. Masuda and P. Fukuda, 'Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structure of Anodic Alumina,' Science, 268 1466-68 (1995)   DOI   ScienceOn
26 T. W. Kueper, S. J. Visco, and L. C. D. Jonghe, 'Thin-Film Ceramic Electrolytes Deposited on Porous and Non-Porous Substrates by Sol-Gel Techniques,' Solid State Ionics, 52 251-59 (1992)   DOI   ScienceOn