• 제목/요약/키워드: porous activated carbon

검색결과 128건 처리시간 0.02초

A review: methane capture by nanoporous carbon materials for automobiles

  • Choi, Pil-Seon;Jeong, Ji-Moon;Choi, Yong-Ki;Kim, Myung-Seok;Shin, Gi-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.18-28
    • /
    • 2016
  • Global warming is considered one of the great challenges of the twenty-first century. In order to reduce the ever-increasing amount of methane (CH4) released into the atmosphere, and thus its impact on global climate change, CH4 storage technologies are attracting significant research interest. CH4 storage processes are attracting technological interest, and methane is being applied as an alternative fuel for vehicles. CH4 storage involves many technologies, among which, adsorption processes such as processes using porous adsorbents are regarded as an important green and economic technology. It is very important to develop highly efficient adsorbents to realize techno-economic systems for CH4 adsorption and storage. In this review, we summarize the nanomaterials being used for CH4 adsorption, which are divided into non-carbonaceous (e.g., zeolites, metal-organic frameworks, and porous polymers) and carbonaceous materials (e.g., activated carbons, ordered porous carbons, and activated carbon fibers), with a focus on recent research.

Preparation of Activated Carbon from Wastepaper and Adsorption of Endocrine Disrupting Chemicals

  • Okayama, Takayuki;Matsushita, Kiyofumi;Sasuzuki, Hiroma;Shimada, Masahiro
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.279-284
    • /
    • 2006
  • Activated carbon is proposed as a new application of wastepaper recycling other than the paper-making. Waste kraft bag is considered to be a suitable raw material for activated carbon because of its low ash content. Small pellets of wastepaper squeezed out from the continuous kneader were carbonized in a nitrogen atmosphere and activated using carbon dioxide. The BET specific surface areas of activated carbon prepared from waste kraft bag was $1,285m^{2}/g$, which is higher than commercially available activated carbons. The activated carbon prepared from wastepaper has a well-developed porous structure, particularly in mesopore and macropore ranges. As a result, activated carbon with iodine adsorption capacity of 1,400 mg/g was obtained from waste kraft bag. In this paper, adsorption amount of Bisphenol A (BPA) was determined to investigate adsorbability of activated carbon from waste kraft bag. Adsorption measurements were on solutions ranging from $0.1{mu}g/L\;to\;100mg/L$. The activated carbon from waste kraft bag gave higher BPA adsorbabilities over a wide range, compared with commercially available activated carbons.

  • PDF

Studies on Pore Characteristics of Microporous Carbons Prepared with Different Types of Silica Templates

  • Manocha, S.;Movaliya, Narendra
    • Carbon letters
    • /
    • 제8권1호
    • /
    • pp.17-24
    • /
    • 2007
  • Microporous carbons with narrow pore size distribution have been successfully synthesized by using hydrolyzed and calcined silica as templates and phenol formaldehyde (pf) resin as carbon precursor. Phenol formaldehyde-silica micro composites were prepared by solution route. Subsesequently, silica templates were removed by HF leaching. Resulting carbons were steam activated. The porous carbons were characterized by nitrogen adsorption-desorption isotherm, SEM, FTIR analysis, iodine adsorption, thermogravimetry analysis, etc. Adsorption isotherms show that the porous carbon prepared from calcined silica as templates are microporous with 88% pores of size <2 nm porosity and are of type I isotherm, while porous carbon prepared by using hydrolyzed silica are microporous with 89% microporosity, shows hysteresis loop at high relative pressure indicating the presence of some mesoporosity in samples. The microporosity in porous carbon materials has a bearing on the nature of silica templates used for pore formation.

Characterization of composite prepared with different mixing ratios of TiO2 to activated carbon and their photocatalytic activity

  • Chen, Ming-Liang;Bae, Jang-Soon;Ko, Young-Shin;Oh, Won-Chun
    • 분석과학
    • /
    • 제19권5호
    • /
    • pp.376-382
    • /
    • 2006
  • In this work, pitch/activated carbon/$TiO_2$ composite were prepared by $CCl_4$ solvent method with different mixing ratios. The BET surface area of pitch/activated carbon/$TiO_2$ composite has a significantly increase with increasing activated carbon content in pitch/activated carbon/$TiO_2$ composite. The surface structure and elemental compositions of the composite were studied by SEM and EDX, respectively. The SEM results were presented to the characterization of porous texture on the pitch/activated carbon/$TiO_2$ composite. And EDX data was shown the presence of C, O, S, Ti and other elements. The structural properties of the composite were studied in XRD measurements. The $TiO_2$ crystal phases of the pitch/activated carbon/$TiO_2$ composite had lots of rutile-type structure which transforms from anatase-type with a little of anatase-type structure. The photocatalytic activities of the composite were evaluated using a photo-decomposition method under UV lamp. The pitch/activated carbon/$TiO_2$ composites were observed better photocatalytic activity than that of pristine $TiO_2$.

식물성 활성탄을 활용한 시멘트 경화체의 특성 (Properties of Cement Matrix Using Vegetable Activated Carbon)

  • 이재훈;박채울;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.138-139
    • /
    • 2020
  • With the rapid progress of industrialization, indoor air quality is a very important factor for modern people who spend most of their day indoors. The recent issue of fine dust and radon on the portal site's popularity search shows that interest in indoor air quality has increased. Fine dust causes respiratory diseases, and radon causes severe lung cancer. The new material was tested using plant activated carbon, palm activated carbon and bamboo activated carbon. Both palm activated carbon and bamboo activated carbon are porous materials and generate smooth physical adsorption. As a result of the experiment, both the activated carbon tends to gradually decrease in strength and fluidity as the replacement ratio increases. The reason for this is that both activated carbons have the property of absorbing moisture, so it is judged that the strength is lowered by absorbing moisture necessary for curing. In the case of fluidity, it is judged that the fluidity is reduced by absorbing the moisture required for the flow. In the future, if the problem of the color of the finished cured body is compensated, it will be possible to manufacture a functional finishing board to replace the existing interior finishing material.

  • PDF

Influence of Pyrolysis Conditions and Type of Resin on the Porosity of Activated Carbon Obtained From Phenolic Resins

  • Agarwal, Damyanti;Lal, Darshan;TripathiN, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.57-63
    • /
    • 2003
  • In polymer precursor based activated carbon, the structure of starting material is likely to have profound effect on the surface properties of end product. To investigate this aspect phenolic resins of different types were prepared using phenol, mcresol and formaldehyde as reactants and $Et_3N$ and $NH_4OH$ as catalyst. Out of these resins two resol resins PFR1 and CFR1 (prepared in excess of formaldehyde using $Et_3N$ as catalyst in the basic pH range) were used as raw materials for the preparation of activated carbons by both chemical and physical activation methods. In chemical activation process both the resins gave activated carbons with high surface areas i.e. 2384 and 2895 $m^2/g$, but pore size distribution in PFR1 resin calculated from Horvath-Kawazoe method, contributes mainly in micropore range i.e. 84.1~88.7 volume percent of pores was covered by micropores. Whereas CFR1 resin when activated with KOH for 2h time, a considerable amount (32.8%) of mesopores was introduced in activated carbon prepared. Physical activation with $CO_2$ leads to the formation of activated carbon with a wide range of surface area (503~1119 $m^2/g$) with both of these resins. The maximum pore volume percentage was obtained in 3-20 ${\AA}$ region by physical activation method.

  • PDF

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Rallapalli, Phani Brahma Somayajulu;Choi, Suk Soon;Ha, Jeong Hyub
    • 공업화학
    • /
    • 제33권2호
    • /
    • pp.133-144
    • /
    • 2022
  • Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

분말활성탄 혼입률에 따른 수성도료의 특성 (Properties of Water-Based Paint According to the Mixing Ratio of Powdered Activated Carbon)

  • 최병철;경인수;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.48-49
    • /
    • 2020
  • Recently, as people's interest in environmental pollution increases, interest in indoor air pollution as well as outdoors is increasing. Accordingly, this study prepares functional paints by mixing powder activated carbon, which is a porous material, into aqueous paints, and examines the adsorption performance of volatile organic compounds (VOCs) and formaldehyde (HCHO). As a result of the experiment, the concentration of volatile organic compounds (VOCs) and formaldehyde (HCHO) tended to decrease as powder activated carbon was incorporated. It is believed that physical adsorption was achieved by the micropores of powdered activated carbon. However, in the adsorption test method, it is judged that the concentration was affected by the inflow of outside air as the chamber cover was opened to put the test object in the empty chamber where a certain concentration was maintained.

  • PDF

Studies on Pyrolysis Behaviour of Banana Stem as Precursor for Porous Carbons

  • Manocha, Satish;Bhagat, Jignesh H.;Manocha, Lalit M.
    • Carbon letters
    • /
    • 제2권2호
    • /
    • pp.91-98
    • /
    • 2001
  • Porous carbons have been prepared from different parts of banana stems using two different routes, viz., by pyrolysing the mass at different temperatures as well as by treating the dried mass with chemicals followed by pyrolysis. The pyrolysis behaviour of all these materials has been studied up to $1000^{\circ}C$. Samples treated with acids exhibit more increase in surface area as compared to those treated with alkalies or salts. Analysis of BET surface area shows that the carbon prepared at low temperature shows mixed porosity, i.e., micro and mesopores. Samples heated to high temperature above $700^{\circ}C$ show decrease in macroporosity and increase in microporosity. Liquid adsorption studies have been made using methylene blue and heavy oil. The activated carbons so prepared exhibit higher oil adsorption mainly in the macro and mesopores.

  • PDF

Effect of Steam Activation Parameters on Characteristics of Pine Based Activated Carbon

  • Manocha, S.M.;Patel, Hemang;Manocha, L.M.
    • Carbon letters
    • /
    • 제11권3호
    • /
    • pp.201-205
    • /
    • 2010
  • Activated carbons are well known as adsorbents for gases and vapors. Micro porous carbons are used for the sorption/separation of light gases, whereas, carbon with bigger pore size are applied for removal of large molecules. Therefore, the control of pore size of activated carbon plays a vital role for their use in specific applications. In the present work, steam activation parameters have been varied to control pore size of the resulting activated carbon. It was found that flow rate of steam has profound effect on both surface characteristic and surface morphology. The flow rate of steam was optimized to retain monolith structure as well as higher surface area.