Browse > Article
http://dx.doi.org/10.5714/CL.2016.17.1.018

A review: methane capture by nanoporous carbon materials for automobiles  

Choi, Pil-Seon (Fuel & Exhaust Engineering Design Team of Research & Development Division, Hyundai Motor Group)
Jeong, Ji-Moon (Department of Chemistry, Inha University)
Choi, Yong-Ki (Department of Chemistry, Inha University)
Kim, Myung-Seok (Department of Chemistry, Inha University)
Shin, Gi-Joo (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.17, no.1, 2016 , pp. 18-28 More about this Journal
Abstract
Global warming is considered one of the great challenges of the twenty-first century. In order to reduce the ever-increasing amount of methane (CH4) released into the atmosphere, and thus its impact on global climate change, CH4 storage technologies are attracting significant research interest. CH4 storage processes are attracting technological interest, and methane is being applied as an alternative fuel for vehicles. CH4 storage involves many technologies, among which, adsorption processes such as processes using porous adsorbents are regarded as an important green and economic technology. It is very important to develop highly efficient adsorbents to realize techno-economic systems for CH4 adsorption and storage. In this review, we summarize the nanomaterials being used for CH4 adsorption, which are divided into non-carbonaceous (e.g., zeolites, metal-organic frameworks, and porous polymers) and carbonaceous materials (e.g., activated carbons, ordered porous carbons, and activated carbon fibers), with a focus on recent research.
Keywords
methane gas; methane storage; nanomaterial; porous material; carbon adsorbent;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou HC. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc, 130, 1012 (2008). http://dx.doi.org/ 10.1021/ja0771639.   DOI
2 Zhou W. Methane storage in porous metal-organic frameworks: current records and future perspectives. Chem Rec, 10, 200 (2010). http://dx.doi.org/10.1002/tcr.201000004.   DOI
3 Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439 (2006). http://dx.doi.org/10.1038/nature05132.   DOI
4 Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev, 112, 673 (2012). http://dx.doi.org/10.1021/cr300014x.   DOI
5 Bétard A, Fischer RA. Metal-organic framework thin films: from fundamentals to applications. Chem Rev, 112, 1055 (2012). http://dx.doi.org/10.1021/cr200167v.   DOI
6 O’Keeffe M, Yaghi OM. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev, 112, 675 (2012). http://dx.doi.org/10.1021/cr200205j.   DOI
7 Yuan D, Lu W, Zhao D, Zhou HC. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater, 23, 3723 (2011). http://dx.doi.org/10.1002/adma.201101759.   DOI
8 Graetz J. New approaches to hydrogen storage. Chem Soc Rev, 38, 73 (2009). http://dx.doi.org/10.1039/B718842K.   DOI
9 Murray LJ, Dincă M, Long JR. Hydrogen storage in metal: organic frameworks. Chem Soc Rev, 38, 1294 (2009). http://dx.doi.org/10.1039/B802256A.   DOI
10 Yang W, Feng YY, Jiang CF, Chu W. Synthesis of multi-walled carbon nanotubes using CoMnMgO catalysts through catalytic chemical vapor deposition. Chin Phys B, 23, 128201 (2014). http://dx.doi.org/10.1088/1674-1056/23/12/128201.   DOI
11 Luo J, Liu Y, Sun W, Jiang C, Xie H, Chu W. Influence of structural parameters on methane adsorption over activated carbon: evaluation by using D–A model. Fuel, 123, 241 (2014). http://dx.doi.org/10.1016/j.fuel.2014.01.053.   DOI
12 Lozano-Castelló D, Alcañiz-Monge J, de la Casa-Lillo MA, Cazorla-Amorós D, Linares-Solano A. Advances in the study of methane storage in porous carbonaceous materials. Fuel, 81, 1777 (2002). http://dx.doi.org/10.1016/S0016-2361(02)00124-2.   DOI
13 Hattori Y, Konishi T, Kaneko K. XAFS and XPS studies on the enhancement of methane adsorption by NiO dispersed ACF with the relevance to structural change of NiO. Chem Phys Lett, 355, 37 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00154-9.   DOI
14 Aukett PN, Quirke N, Riddiford S, Tennison SR. Methane adsorption on microporous carbons: a comparison of experiment, theory, and simulation. Carbon, 30, 913 (1992). http://dx.doi.org/10.1016/0008-6223(92)90015-O.   DOI
15 Sreńscek-Nazzal J, Kamińska W, Michalkiewicz B, Koren ZC. Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind Crops Prod, 47, 153 (2013). http://dx.doi.org/10.1016/j.indcrop.2013.03.004.   DOI
16 Bastos-Neto M, Canabrava DV, Torres AEB, Rodriguez-Castellón E, Jiménez-López A, Azevedo DCS, Cavalcante CL Jr. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Appl Surf Sci, 253, 5721 (2007). http://dx.doi.org/10.1016/j.apsusc.2006.12.056.   DOI
17 Suh MP, Park HJ, Prasad TK, Lim DW. Hydrogen storage in metal–organic frameworks. Chem Rev, 112, 782 (2012). http://dx.doi.org/10.1021/cr200274s.   DOI
18 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). http://dx.doi.org/10.1038/35104634.   DOI
19 Lim KL, Kazemian H, Yaakob Z, Daud WRW. Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol, 33, 213 (2010). http://dx.doi.org/10.1002/ceat.200900376.   DOI
20 Getman RB, Bae YS, Wilmer CE, Snurr RQ. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem Rev, 112, 703 (2012). http://dx.doi.org/10.1021/cr200217c.   DOI
21 US Environmental Protection Agency. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2007 (Report No. EPA 430-R-09-004), US Environmental Protection Agency, Washington, DC (2009).
22 Kayal S, Sun B, Chakraborty A. Study of metal-organic framework MIL-101 (Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy, 91, 772 (2015). http://dx.doi.org/10.1016/j.energy.2015.08.096(1993).   DOI
23 Menon VC, Komarneni S. Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater, 5, 43 (1998). http://dx.doi.org/10.1023/A:1009673830619.   DOI
24 Collins DJ, Ma S, Zhou HC. Hydrogen and Methane Storage in Metal-Organic Frameworks. In: MacGillivray LR, ed. Metal-Organic Frameworks: Design and Application, John Wiley & Sons, Inc., Hoboken, NJ, 249 (2010).
25 Gallo M, Glossman-Mitnik D. Fuel gas storage and separations by metal-organic frameworks: simulated adsorption isotherms for H2 and CH4 and their equimolar mixture. J Phys Chem C, 113, 6634 (2009). http://dx.doi.org/10.1021/jp809539w.   DOI
26 Wegrzyn J, Wiesmann H, Lee T. Low pressure storage of natural gas on activated carbon. Society of Automotive Engineers Proceedings of the Annual Automotive Technology Development Contractor’s Coordination Meeting, Warrendale, PA (1992).
27 Loh WS, Rahman KA, Chakraborty A, Saha BB, Choo YS, Khoo BC, Ng KC. Improved isotherm data for adsorption of methane on activated carbons. J Chem Eng Data, 55, 2840 (2010). http://dx.doi.org/10.1021/je901011c.   DOI
28 Policicchio A, Maccallini E, Agostino RG, Ciuchi F, Aloise A, Giordano G. Higher methane storage at low pressure and room temperature in new easily scalable large-scale production activated carbon for static and vehicular applications. Fuel, 104, 813 (2013). http://dx.doi.org/10.1016/j.fuel.2012.07.035.   DOI
29 Lee JW, Balathanigaimani MS, Kang HC, Shim WG, Kim C, Moon H. Methane storage on phenol-based activated carbons at (293.15, 303.15, and 313.15) K. J Chem Eng Data, 52, 66 (2007). http://dx.doi.org/10.1021/je060218m.   DOI
30 Salehi E, Taghikhani V, Ghotbi C, Nemati Lay E, Shojaei A. Theoretical and experimental study on the adsorption and desorption of methane by granular activated carbon at 25°C. J Nat Gas Chem, 16, 415 (2007). http://dx.doi.org/10.1016/S1003-9953(08)60014-6.   DOI
31 Yeon SH, Osswald S, Gogotsi Y, Singer JP, Simmons JM, Fischer JE, Lillo-Ródenas MA, Linares-Solano Á. Enhanced methane storage of chemically and physically activated carbide-derived carbon. J Power Sources, 191, 560 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.02.019.   DOI
32 Guan C, Loo LS, Wang K, Yang C. Methane storage in carbon pellets prepared via a binderless method. Energy Convers Manag, 52, 1258 (2011). http://dx.doi.org/10.1016/j.enconman.2010.09.022.   DOI
33 Moradi M, Peyghan AA. Role of sodium decoration on the methane storage properties of BC3 nanosheet. Struct Chem, 25, 1083 (2014). http://dx.doi.org/10.1007/s11224-013-0384-0.   DOI
34 Wilson EJ, Gerard D. Carbon Capture and Sequestration: Integrating Technology, Monitoring and Regulation. Blackwell Publishing, Ames, IA (2007).
35 Rackley SA. Carbon Capture and Storage. Butterworth-Heinemann/Elsevier, Boston (2010).
36 Hester RE, Harrison RM. Electronic Waste Management. RSC Publishing, Cambridge (2009).
37 Roosa SA, Ghaveri AG. Carbon Reduction: Policies, Strategies, and Technologies. Fairmont Press, Lilburn, GA (2009).
38 Yang J, Sudik A, Wolverton C, Siegel DJ. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev, 39, 656 (2010). http://dx.doi.org/10.1039/B802882F.   DOI
39 Cazorla-Amorós D, Alcañiz-Monge J, Linares-Solano A. Characterization of activated carbon fibers by CO2 adsorption. Langmuir, 12, 2820 (1996). http://dx.doi.org/10.1021/la960022s.   DOI
40 Jiang S, Zollweg JA, Gubbins KE. High-pressure adsorption of methane and ethane in activated carbon and carbon fibers. J Phys Chem, 98, 5709 (1994). http://dx.doi.org/10.1021/j100073a023.   DOI
41 Im JS, Jung MJ, Lee YS. Effects of fluorination modification on pore size controlled electrospun activated carbon fibers for high capacity methane storage. J Colloid Interface Sci, 339, 31 (2009). http://dx.doi.org/10.1016/j.jcis.2009.07.013.   DOI
42 Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295, 469 (2002). http://dx.doi.org/10.1126/science.1067208.   DOI
43 Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc, 135, 11887 (2013). http://dx.doi.org/10.1021/ja4045289.   DOI
44 He Y, Zhou W, Qian G, Chen B. Methane storage in metal–organic frameworks. Chem Soc Rev, 43, 5657 (2014). http://dx.doi.org/10.1039/C4CS00032C.   DOI
45 How CK, Khan MA, Hosseini S, Chuah TG, Choong TSY. Fabrication of mesoporous carbons coated monolith via evaporative induced self-assembly approach: effect of solvent and acid concentration on pore architecture. J Ind Eng Chem, 20, 4286 (2014). http://dx.doi.org/10.1016/j.jiec.2014.01.034.   DOI
46 Gándara F, Furukawa H, Lee S, Yaghi OM. High methane storage capacity in aluminum metal–organic frameworks. J Am Chem Soc, 136, 5271 (2014). http://dx.doi.org/10.1021/ja501606h.   DOI
47 Antoniou MK, Diamanti EK, Enotiadis A, Policicchio A, Dimos K, Ciuchi F, Maccallini E, Gournis D, Agostino RG. Methane storage in zeolite-like carbon materials. Microporous Mesoporous Mater, 188, 16 (2014). http://dx.doi.org/10.1016/j.micromeso.2013.12.030.   DOI
48 Wu H, Zhou W, Yildirim T. High-capacity methane storage in metal−organic frameworks M2(dhtp): the important role of open metal sites. J Am Chem Soc, 131, 4995 (2009). http://dx.doi.org/10.1021/ja900258t.   DOI
49 Guo Z, Wu H, Srinivas G, Zhou Y, Xiang S, Chen Z, Yang Y, Zhou W, O’Keeffe M, Chen B. A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew Chem Int Ed, 50, 3178 (2011). http://dx.doi.org/10.1002/anie.201007583.   DOI
50 Sloan ED Jr. Fundamental principles and applications of natural gas hydrates. Nature, 426, 353 (2003). http://dx.doi.org/10.1038/nature02135.   DOI
51 Cao D, Wu J. Self-diffusion of methane in single-walled carbon nanotubes at sub- and supercritical conditions. Langmuir, 20, 3759 (2004). http://dx.doi.org/10.1021/la036375q.   DOI
52 Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H, Kahoh H, Kaneko K. Single-wall nanostructured carbon for methane storage. J Phys Chem B, 107, 4681 (2003). http://dx.doi.org/10.1021/jp0278263.   DOI
53 Vakifahmetoglu C, Presser V, Yeon SH, Colombo P, Gogotsi Y. Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon. Microporous Mesoporous Mater, 144, 105 (2011). http://dx.doi.org/10.1016/j.micromeso.2011.03.042.   DOI
54 Méndez-Liñán L, López-Garzón FJ, Domingo-García M, Pérez-Mendoza M. Carbon adsorbents from polycarbonate pyrolysis char residue: hydrogen and methane storage capacities. Energy Fuels, 24, 3394 (2010). http://dx.doi.org/10.1021/ef901525b.   DOI
55 Kim BJ, Park SJ. A simple method for the preparation of activated carbon fibers coated with graphite nanofibers. J Colloid Interface Sci, 315, 791 (2007). http://dx.doi.org/10.1016/j.jcis.2007.07.013.   DOI
56 Yulong W, Fei W, Guohua L, Guoqing N, Mingde Y. Methane storage in multi-walled carbon nanotubes at the quantity of 80 g. Mater Res Bull, 43, 1431 (2008). http://dx.doi.org/10.1016/j.materresbull.2007.06.046.   DOI
57 Xiang Z, Hu Z, Cao D, Yang W, Lu J, Han B, Wang W. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. Angew Chem Int Ed, 50, 491 (2011). http://dx.doi.org/10.1002/anie.201004537.   DOI
58 Gomez-Gualdron DA, Gutov OV, Krungleviciute V, Borah B, Mondloch JE, Hupp JT, Yildirim T, Farha OK, Snurr RQ. Computational design of metal-organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem Mater, 26, 5632 (2014). http://dx.doi.org/10.1021/cm502304e.   DOI
59 Park SJ, Kim BJ. Ammonia removal of activated carbon fibers produced by oxyfluorination. J Colloid Interface Sci, 291, 597 (2005). http://dx.doi.org/10.1016/j.jcis.2005.05.012.   DOI
60 Im JS, Park SJ, Lee YS. Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage. Mater Res Bull, 44, 1871 (2009). http://dx.doi.org/10.1016/j.materresbull.2009.05.010.   DOI
61 Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. KOH activation of carbon nanofibers. Carbon, 42, 1723 (2004). http://dx.doi.org/10.1016/j.carbon.2004.03.006.   DOI
62 Park SJ, Seo MK, Lee YS. Surface characteristics of fluorine-modified PAN-based carbon fibers. Carbon, 41, 723 (2003). http://dx.doi.org/10.1016/S0008-6223(02)00384-6.   DOI
63 Suzuki M. Activated carbon fiber: fundamentals and applications. Carbon, 32, 577 (1994). http://dx.doi.org/10.1016/0008-6223(94)90075-2.   DOI
64 Moradi SE. Microwave assisted preparation of sodium dodecyl sulphate (SDS) modified ordered nanoporous carbon and its adsorption for MB dye. J Ind Eng Chem, 20, 208 (2014). http://dx.doi.org/10.1016/j.jiec.2013.04.005.   DOI
65 Shao X, Wang W, Zhang X. Experimental measurements and computer simulation of methane adsorption on activated carbon fibers. Carbon, 45, 188 (2007). http://dx.doi.org/10.1016/j.carbon.2006.07.006.   DOI
66 Alcañiz-Monge J, De La Casa-Lillo MA, Cazorla-Amoros D, Linares-Solano A. Methane storage in activated carbon fibres. Carbon, 35, 291 (1997). http://dx.doi.org/10.1016/S0008-6223(96)00156-X.   DOI
67 Dubey SP, Dwivedi AD, Lee C, Kwon YN, Sillanpaa M, Ma LQ. Raspberry derived mesoporous carbon-tubules and fixed-bed adsorption of pharmaceutical drugs. J Ind Eng Chem, 20, 1126 (2014). http://dx.doi.org/10.1016/j.jiec.2013.06.051.   DOI
68 Ndamanisha JC, Guo L. Ordered mesoporous carbon for electrochemical sensing: a review. Anal Chim Acta, 747, 19 (2012). http://dx.doi.org/10.1016/j.aca.2012.08.032.   DOI
69 Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 18, 2073 (2006). http://dx.doi.org/10.1002/adma.200501576.   DOI
70 Ghimbeu CM, Le Meins JM, Zlotea C, Vidal L, Schrodj G, Latroche M, Vix-Guterl C. Controlled synthesis of NiCo nanoalloys embedded in ordered porous carbon by a novel soft-template strategy. Carbon, 67, 260 (2014). http://dx.doi.org/10.1016/j.carbon.2013.09.089.   DOI
71 Lee SY, Park SJ. Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors. J Solid State Chem, 184, 2655 (2011). http://dx.doi.org/10.1016/j.jssc.2011.07.034.   DOI
72 Park SJ, Kim KD. Influence of activation temperature on adsorption characteristics of activated carbon fiber composites. Carbon, 39, 1741 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00305-5.   DOI
73 Karthikeyan S, Viswanathan K, Boopathy R, Maharaja P, Sekaran G. Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon. Ind Eng Chem, 21, 942 (2015). http://dx.doi.org/10.1016/j.jiec.2014.04.036.   DOI
74 Cao D, Zhang X, Chen J, Wang W, Yun J. Optimization of single-walled carbon nanotube arrays for methane storage at room temperature. J Phys Chem B, 107, 13286 (2003). http://dx.doi.org/10.1021/jp036094r.   DOI
75 Guan C, Su F, Zhao XS, Wang K. Methane storage in a template-synthesized carbon. Sep Purif Technol, 64, 124 (2008). http://dx.doi.org/10.1016/j.seppur.2008.08.007.   DOI
76 Dreisbach F, Staudt R, Keller JU. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption, 5, 215 (1999). http://dx.doi.org/10.1023/A:1008914703884.   DOI
77 Jeong JM, Rhee KY, Park SJ. Effect of chemical treatments on lithium recovery process of activated carbons. J Ind Eng Chem, 27, 329 (2015). http://dx.doi.org/10.1016/j.jiec.2015.01.009.   DOI
78 Bastos-Neto M, Torres AEB, Azevedo DCS, Cavalcante CL Jr. Methane adsorption storage using microporous carbons obtained from coconut shells. Adsorption, 11, 911 (2005). http://dx.doi.org/10.1007/s10450-005-6045-x.   DOI
79 Sircar S, Golden TC, Rao MB. Activated carbon for gas separation and storage. Carbon, 34, 1 (1996). http://dx.doi.org/10.1016/0008-6223(95)00128-X.   DOI
80 Liu J, Zhou Y, Sun Y, Su W, Zhou L. Methane storage in wet carbon of tailored pore sizes. Carbon, 49, 3731 (2011). http://dx.doi.org/10.1016/j.carbon.2011.05.005.   DOI
81 Lee SY, Park SJ. Synthesis of zeolite-casted microporous carbons and their hydrogen storage capacity. J Colloid Interface Sci, 384, 116 (2012). http://dx.doi.org/10.1016/j.jcis.2012.06.058.   DOI
82 Ma TY, Liu L, Yuan ZY. Direct synthesis of ordered mesoporous carbons. Chem Soc Rev, 42, 3977 (2013). http://dx.doi.org/10.1039/c2cs35301f.   DOI
83 Sakintuna B, Yurum Y. Templated porous carbons: a review article. Ind Eng Chem Res, 44, 2893 (2005). http://dx.doi.org/10.1021/ie049080w.   DOI
84 Lee SY, Kim BJ, Park SJ. Influence of KOH-activated graphite nanofibers on the electrochemical behavior of Pt-Ru nanoparticle catalysts for fuel cells. J Solid State Chem, 199, 258 (2013). http://dx.doi.org/10.1016/j.jssc.2012.12.028.   DOI
85 Seo MK, Park SJ. Influence of air-oxidation on electric double layer capacitances of multi-walled carbon nanotube electrodes. Curr Appl Phys, 10, 241 (2010). http://dx.doi.org/10.1016/j.cap.2009.05.031.   DOI
86 Seo MK, Park SJ. A kinetic study on the thermal degradation of multi-walled carbon nanotubes-reinforced poly(propylene) composites. Macromol Mater Eng, 289, 368 (2004). http://dx.doi.org/10.1002/mame.200300303.   DOI
87 Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G. Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv, 4, 2911 (2014). http://dx.doi.org/10.1039/c3ra44906h.   DOI
88 Bai BC, Cho S, Yu HR, Yi KB, Kim KD, Lee YS. Effects of aminated carbon molecular sieves on breakthrough curve behavior in CO2/CH4 separation. J Ind Eng Chem, 19, 776 (2013). http://dx.doi.org/10.1016/j.jiec.2012.10.016.   DOI
89 Park SJ, Kim BJ. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. J Colloid Interface Sci, 275, 590 (2004). http://dx.doi.org/10.1016/j.jcis.2004.03.011.   DOI
90 Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Quinn DF. Activated carbon monoliths for methane storage: influence of binder. Carbon, 40, 2817 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00194-X.   DOI
91 Park SJ, Shin JS, Shim JW, Ryu SK. Effect of acidic treatment on metal adsorptions of pitch-based activated carbon fibers. J Colloid Interface Sci, 275, 342 (2004). http://dx.doi.org/10.1016/j.jcis.2004.01.010.   DOI
92 Kim KS, Park SJ. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance. Electrochim Acta, 56, 10130 (2011). http://dx.doi.org/10.1016/j.electacta.2011.08.107.   DOI
93 Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4.   DOI
94 Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2, 796 (2009). http://dx.doi.org/10.1002/cssc.200900036.   DOI
95 Cavenati S, Grande CA, Rodrigues AE. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data, 49, 1095 (2004). http://dx.doi.org/10.1021/je0498917.   DOI
96 Saha D, Bao Z, Jia F, Deng S. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ Sci Technol, 44, 1820 (2010). http://dx.doi.org/10.1021/es9032309.   DOI
97 Yu L, Gong J, Zeng C, Zhang L. Synthesis of binderless zeolite X microspheres and their CO2 adsorption properties. Sep Purif Technol, 118, 188 (2013). http://dx.doi.org/10.1016/j.seppur.2013.06.035.   DOI
98 Grande CA, Blom R. Cryogenic adsorption of methane and carbon dioxide on zeolites 4A and 13X. Energy Fuels, 28, 6688 (2014). http://dx.doi.org/10.1021/ef501814x.   DOI
99 Brandani F, Ruthven DM. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind Eng Chem Res, 43, 8339 (2004). http://dx.doi.org/10.1021/ie040183o.   DOI
100 Li G, Xiao P, Webley P, Zhang J, Singh R, Marshall M. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 14, 415 (2008). http://dx.doi.org/10.1007/s10450-007-9100-y.   DOI
101 Sethia G, Somani RS, Bajaj HC. Sorption of methane and nitrogen on cesium exchanged zeolite-X: structure, cation position and adsorption relationship. Ind Eng Chem Res, 53, 6807 (2014). http://dx.doi.org/10.1021/ie5002839.   DOI
102 Park SJ, Kim KD. Adsorption behaviors of CO2 and NH3 on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/10.1006/jcis.1998.6058.   DOI
103 Casco ME, Martínez-Escandell M, Gadea-Ramos E, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F, High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position? Chem Mater, 27, 959 (2015). http://dx.doi.org/ 10.1021/cm5042524.   DOI
104 Chen L, Honsho Y, Seki S, Jiang D. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J Am Chem Soc, 132, 6742 (2010). http://dx.doi.org/10.1021/ja100327h.   DOI
105 Jiang JX, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak YZ, Xiao J, Higgins SJ, Adams DJ, Cooper AI. Metal-organic conjugated microporous polymers. Angew Chem Int Ed, 50, 1072 (2011). http://dx.doi.org/10.1002/anie.201005864.   DOI
106 Chałupnik S, Franus W, Wysocka M, Gzyl G. Application of zeolites for radium removal from mine water. Environ Sci Pollut Res, 20, 7900 (2013). http://dx.doi.org/10.1007/s11356-013-1877-5.   DOI
107 Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ. Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci, 4, 2062 (2011). http://dx.doi.org/10.1039/c1ee01092a.   DOI
108 Senkovska I, Kaskel S. High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Microporous Mesoporous Mater, 112, 108 (2008). http://dx.doi.org/10.1016/j.micromeso.2007.09.016.   DOI
109 Chester AW, Derouane EG. Zeolite Characterization and Catalysis: A Tutorial. Springer, New York, NY (2009).
110 Yang R, Xu Z, Yang S, Michos I, Li LF, Angelopoulos AP, Dong J. Nonionic zeolite membrane as potential ion separator in redox-flow battery. J Membr Sci, 450, 12 (2014). http://dx.doi.org/10.1016/j.memsci.2013.08.048.   DOI
111 Bao Z, Yu L, Ren Q, Lu X, Deng S. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci, 353, 549 (2011). http://dx.doi.org/10.1016/j.jcis.2010.09.065.   DOI
112 Simmons JM, Wu H, Zhou W, Yildirim T. Carbon capture in metal-organic frameworks: a comparative study. Energy Environ Sci, 4, 2177 (2011). http://dx.doi.org/10.1039/c0ee00700e.   DOI
113 Caskey SR, Wong-Foy AG, Matzger AJ. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc, 130, 10870 (2008). http://dx.doi.org/10.1021/ja8036096.   DOI
114 Qin W, Cao W, Liu H, Li Z, Li Y. Metal-organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. RSC Adv, 4, 2414 (2014). http://dx.doi.org/10.1039/c3ra45983g.   DOI
115 Liu YY, Leus K, Bogaerts T, Hemelsoet K, Bruneel E, Van Speybroeck V, Van Der Voort P. Bimetallic-organic framework as a zero-leaching catalyst in the aerobic oxidation of cyclohexene. ChemCatChem, 5, 3657 (2013). http://dx.doi.org/10.1002/cctc.201300529.   DOI
116 Anbia M, Sheykhi S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption. J Ind Eng Chem, 19, 1583 (2013). http://dx.doi.org/10.1016/j.jiec.2013.01.026.   DOI
117 Petit C, Bandosz TJ. MOF-graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. J Mater Chem, 19, 6521 (2009). http://dx.doi.org/10.1039/b908862h.   DOI
118 Glover TG, Peterson GW, Schindler BJ, Britt D, Yaghi O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem Eng Sci, 66, 163 (2011). http://dx.doi.org/10.1016/j.ces.2010.10.002.   DOI
119 Jahan M, Liu Z, Loh KP. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater, 23, 5363 (2013). http://dx.doi.org/10.1002/adfm.201300510.   DOI
120 MacDonald JAF, Quinn DF. Carbon absorbents for natural gas storage. Fuel, 77, 61 (1998). http://dx.doi.org/10.1016/S0016-2361(97)00128-2.   DOI
121 Sun J, Rood MJ, Rostam-Abadi M, Lizzio AA. Natural gas storage with activated carbon from a bituminous coal. Gas Sep Purif, 10, 91 (1996). http://dx.doi.org/10.1016/0950-4214(96)00009-6.   DOI
122 Sun J, Brady TA, Rood MJ, Lehmann CM, Rostam-Abadi M, Lizzio AA. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires. Energy Fuels, 11, 316 (1997). http://dx.doi.org/10.1021/ef960201h.   DOI
123 Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science, 341, 6149 (2013). http://dx.doi.org/10.1126/science.1230444.
124 Pantatosaki E, Pazzona FG, Megariotis G, Papadopoulos GK. Atomistic simulation studies on the dynamics and thermodynamics of nonpolar molecules within the zeolite imidazolate framework-8. J Phys Chem B, 114, 2493 (2010). http://dx.doi.org/10.1021/jp911477a.   DOI
125 Morris RE, Wheatley PS. Gas storage in nanoporous materials. Angew Chem Int Ed, 47, 4966 (2008). http://dx.doi.org/10.1002/anie.200703934.   DOI
126 Paraskeva P, Kalderis D, Diamadopoulos E. Production of activated carbon from agricultural by-products. J Chem Technol Biotechnol, 83, 581 (2008). http://dx.doi.org/10.1002/jctb.1847.   DOI
127 Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM. Ultrahigh porosity in metal-organic frameworks. Science, 329, 424 (2010). http://dx.doi.org/10.1126/science.1192160.   DOI
128 McDonald TM, D’Alessandro DM, Krishna R, Long JR. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chem Sci, 2, 2022 (2011). http://dx.doi.org/10.1039/c1sc00354b.   DOI
129 Meng LY, Park SJ. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J Colloid Interface Sci, 352, 498 (2010). http://dx.doi.org/10.1016/j.jcis.2010.08.048.   DOI
130 Park SJ, Park BJ, Ryu SK. Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) adsorption. Carbon, 37, 1223 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00318-2.   DOI
131 Balsamo M, Budinova T, Erto A, Lancia A, Petrova B, Petrov N, Tsyntsarski B. CO2 adsorption onto synthetic activated carbon: kinetic, thermodynamic and regeneration studies. Sep Purif Technol, 116, 214 (2013). http://dx.doi.org/10.1016/j.seppur.2013.05.041.   DOI
132 Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci, 249, 458 (2002). http://dx.doi.org/10.1006/jcis.2002.8269.   DOI
133 Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.024.   DOI
134 Ma’mun S, Svendsen HF, Hoff KA, Juliussen O. Selection of new absorbents for carbon dioxide capture. Energy Convers Manag, 48, 251 (2007). http://dx.doi.org/10.1016/j.enconman.2006.04.007.   DOI
135 Cracknell RF, Gordon P, Gubbins KE. Influence of pore geometry on the design of microporous materials for methane storage. J Phys Chem, 97, 494 (1993). http://dx.doi.org/10.1021/j100104a036.   DOI
136 Kin KH, Baik KJ, Kim IW, Lee HK. Optimization of membrane process for methane recovery from biogas. Sep Sci Technol, 47, 963 (2012). http://dx.doi.org/10.1080/01496395.2011.644878.   DOI
137 Biloé S, Goetz V, Guillot A. Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon, 40, 1295 (2002). http://dx.doi.org/10.1016/S0008-6223(01)00287-1.   DOI
138 Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc, 131, 2159 (2009). http://dx.doi.org/10.1021/ja806624j.   DOI
139 Kennett JP, Cannariato KG, Hendy IL, Behl RJ. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science, 288, 128 (2000). http://dx.doi.org/10.1126/science.288.5463.128.   DOI
140 Yuan D, Zhao D, Sun D, Zhou HC. An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed, 49, 5357 (2010). http://dx.doi.org/10.1002/anie.201001009.   DOI
141 Yoo HM, Lee SY, Kim BJ, Park SJ. Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons. Carbon Lett, 12, 112 (2011). http://dx.doi.org/10.5714/CL.2011.12.2.112.   DOI
142 Park SJ, Lee SY, Kim KS, Jin FL. A novel drying process for oil adsorption of expanded graphite. Carbon Lett, 14, 193 (2013). http://dx.doi.org/10.5714/CL.2013.14.3.193.   DOI
143 Jeon DH, Min BG, Oh JG, Nah C, Park SJ. Influence of nitrogen moieties on CO2 capture of carbon aerogel. Carbon Lett, 16, 57 (2015). http://dx.doi.org/10.5714/CL.2015.16.1.057.   DOI
144 Cho EA, Lee SY, Park SJ. Effect of microporosity on nitrogen-doped microporous carbons for electrode of supercapacitor. Carbon Lett, 15, 210 (2014). http://dx.doi.org/10.5714/CL.2014.15.3.210.   DOI
145 Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). http://dx.doi.org/10.1016/j.jcis.2005.01.043.   DOI
146 Düren T, Sarkisov L, Yaghi OM, Snurr RQ. Design of new materials for methane storage. Langmuir, 20, 2683 (2004). http://dx.doi.org/10.1021/la0355500.   DOI
147 Lin X, Champness NR, Schröder M. Hydrogen, methane and carbon dioxide adsorption in metal-organic framework materials. Top Curr Chem, 293, 35 (2010). http://dx.doi.org/10.1007/128_2009_21.