• 제목/요약/키워드: porous $CeO_2$

검색결과 25건 처리시간 0.03초

Fabrication and Properties of Porous Ni Thin Films

  • Choi, Sun-Hee;Kim, Woo-Sik;Kim, Sung-Moon;Lee, Jong-Ho;Son, Ji-Won;Kim, Joo-Sun
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.265-269
    • /
    • 2006
  • We have deposited NiO films by RF sputtering on $Al_2O_3/SiO_2/Si$ and 100 nm-thick Gd doped $CeO_2$ covered $Al_2O_3/SiO_2/Si$ substrates at various $Ar/O_2$ ratios. The deposited films were reduced to form porous Ni thin fllms in 4% $H_2\;at\;400^{\circ}C$. For the films deposited in pure Ar, the reduction was retarded due to the thickness and the orientation of the NiO films. On the other hand, the films deposited in oxygen mixed ambient were reduced and formed porous Ni films after 20 min of reduction. We also investigated the possibility of using the films for the single chamber operation by studying the electrical property of the films in the fuel/air mixed environment. It is shown that the resistance of the Ni film increases quickly in the mixed gas environment and thus further improvements of Ni-base anodes are required for using them in the single chamber operation.

에어로졸 증착법[aerosol depostion method]에 의한 $Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni 수소분리막 제조 ($Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni Composite Membrane for Hydrogen Separation by Aerosol Deposition Method)

  • 박영수;변명섭;최진섭;김진호;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.117-122
    • /
    • 2010
  • BCY($Ba(Ce_{0.9}Y_{0.1})O_{3-\delta}$) oxide, shows high protonic conductivity at high temperatures, and are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BCY-Ni layer have to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and would be applied to the fabrication process of AD integration ceramic layer effectively. XRD and SEM measurements were conducted in order to analyze the characteristics of BCY-Ni membrane fabricated by AD process.

전기화학증착법에 의한 $CeO_2$계 고체전해질 박막의 제조 (Preparation of $CeO_2$ Based Solid Electrolyte Thin Films by Electrochemical Vapor Deposition)

  • 박동원;김대룡
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1067-1073
    • /
    • 1997
  • The yttria doped ceria (YDC) thin films were fabricated by electrochemical vapor deposition on the porous $\alpha$-Al2O3 substrate. The growth rates of the films obeyed a parabolic rate law, which constant was 259.0 $m^2$/hr at 120$0^{\circ}C$. As deposition temperature (above 110$0^{\circ}C$) increased, dense thin films were enhanced. Mole fraction of XYC13 had an effect upon surface morphologies. Electrical conductivity was increased with deposition temperature. The conductivity of YDC film prepared at XYC13=7.9$\times$10-2 was about 0.097 S/cm at 104$0^{\circ}C$ and the activation energy of conduction was calculated to be 26.6 kcal/mol.

  • PDF

Fabrication of YSZ/GDC Bilayer Electrolyte Thin Film for Solid Oxide Fuel Cells

  • Yang, Seon-Ho;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.189-192
    • /
    • 2014
  • Yttria-stablized zirconia (YSZ) is the most commonly used electrolyte material, but the reduction in working temperature leads to insufficient ionic conductivity. Ceria based electrolytes (GDC) are more attractive in terms of conductivity at low temperature, but these materials are well known to be reducible at very low oxygen partial pressure. The reduction of electrolyte resistivity is necessary to overcome cell performance losses. So, thin YSZ/GDC bilayer technology seems suitable for decreasing the electrolyte resistance at lower operating temperatures. Bilayer electrolytes composed of a galdolinium-doped $CeO_2$ ($Ce_{0.9}Gd_{0.1}O_{1.95}$, GDC) layer and yttria-stabilized $ZrO_2$ (YSZ) layer with various thicknesses were deposited by RF sputtering and E-beam evaporation. The bilayer electrolytes were deposited between porous Ni-GDC anode and LSM cathode for anode-supported single cells. Thin film structure and surface morphology were investigated by X-ray diffraction (XRD), using $CuK{\alpha}$-radiation in the range of 2ce morphol$^{\circ}C$. The XRD patterns exhibit a well-formed cubic fluorite structure, and sharp lines of XRD peaks can be observed, which indicate a single solid solution. The morphology and size of the prepared particles were investigated by field-emission scanning electron microscopy (FE-SEM). The performance of the cells was evaluated over $500{\sim}800^{\circ}C$, using humidified hydrogen as fuel, and air as oxidant.

${MgCr_2}{O_4}$계 박막 습도센서의 감습 특성 (Humidity-Sensitive Characteristics of ${MgCr_2}{O_4}$-Based Thin-Film Humidity Sensors)

  • 편영미;김태송;유광수
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.537-544
    • /
    • 2000
  • Thin-film humidity sensor which TiO2, ZrO2, or CeO2 was added to MgCr2O4-based materials, respectively, were fabricated on the alumina substrate by using a resistant-heating evaporator. Thin films were approximately 2${\mu}{\textrm}{m}$ in grain size and shwoed porous microstructures. The resistance of the sensor decreased with increasing the relative humidity and the MgCr2O4-TiO2 sensor had the best humidity-sensing characteristics (linearity in relative humidity versus resistance).

  • PDF

분무열분해, 후소성 및 볼밀링을 조합한 방법을 이용한 세리아의 합성 및 특성연구 (Synthesis of ceria by combination of spray pyrolysis, postheat, and ball-milling and its characterization)

  • 김현익;김상필;송재경;김상헌
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1057-1072
    • /
    • 2018
  • 세리아 입자의 합성을 위하여 분무열분해 시 유기 첨가제인 EG(ethylene glycol)과 CA(citric acid)를 첨가하여 중공성 및 다공성을 갖는 $CeO_2$ 마이크로 크기의 입자를 제조하였으며 첨가량에 따른 특성을 비교하였다. 분무열분해과정, 후소성 및 볼밀링 과정을 적절히 조합하여 만든 6가지 경로에 의해 나노 크기의 세리아 입자를 합성하였다. 6가지 경로 중 EG 및 CA가 0.05M 첨가된 Ce(III)가 전구체 수용액을 이용하여 분무열분해${\rightarrow}$후소성${\rightarrow}$볼밀링${\rightarrow}$후소성의 경로에 의해 얻어진 $CeO_2$ 입자에 대해 TEM 분석으로 측정한 입자의 평균 크기 24 nm(편차=3.8 nm)는 Debye-Scherrer식에 의해 계산된 1차 입자의 크기(20 nm)와 가장 유사한 크기를 나타내었다. 제조된 나노입자분말의 형태적 및 구조적 특성을 알아보기 위하여 SEM(Scanning Electron Microscopy), XRD(X-Ray Diffractometer) 및 TEM(Transmission Electron Microscopy)을 통하여 특성을 분석하였다.

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

Nanocomposite Ni-CGO Synthesized by the Citric Method as a Substrate for Thin-film IT-SOFC

  • Wang, Zhenwei;Liu, Yu;Hashimoto, Shin-ichi;Mori, Masashi
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.782-787
    • /
    • 2008
  • Ni-ceria cermets have been extensively investigated as candidates for the anode in intermediate-temperature solid oxide fuel cells. We have used the citric method to synthesize nanocomposite powders consisting of NiO (Ni metal content: $40{\sim}60%$ by volume) highly dispersed in $Ce_{0.9}Gd_{0.1}O_{1.95}$ (CGO). The microstructure characteristics and sintering behaviors of the nanocomposites were investigated. No impurity phases were observed and the shrinkage of these substrates matched well with that of a CGO electrolyte with a specific surface area of $11\;m^2/g$. Densification of the CGO electrolyte layer to $<5\;{\mu}m$ thickness was achieved by co-firing the laminated electrolyte with the porous NiO-CGO substrate at $1400^{\circ}C$ for 6 h.

PVA 용액법과 국산 산화알루미늄을 적용하여 대기 플라즈마 용사법으로 합성된 구형의 YAG:Ce3+ 형광체의 발광특성 (Optical Properties of Spherical YAG:Ce3+ Phosphor Powders Synthesized by Atmospheric Plasma Spraying Method Appling PVA Solution Route and Domestic Aluminium Oxide Seed)

  • 김용현;이상진
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.424-430
    • /
    • 2023
  • YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle size of approx imately 30 ㎛. As a result of the PKG test of the YAG phosphor powder, the synthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.

알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향 (EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES)

  • 이화진;송광엽;강정길
    • 대한치과보철학회지
    • /
    • 제38권5호
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF