• Title/Summary/Keyword: poroelastic properties

Search Result 13, Processing Time 0.025 seconds

Quantitative Assessment of Variation in Poroelastic Properties of Composite Materials Using Micromechanical RVE Models

  • Han, Su Yeon;Kim, Sung Jun;Shin, Eui Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • A poroelastic composite material, containing different material phases and filled with fluids, serves as a model to formulate the overall ablative behaviors of such materials. This article deals with the assessment of variation in nondeterministic poroelastic properties of two-phase composite materials using micromechanical representative volume element (RVE) models. Considering the configuration and arrangement of pores in a matrix phase, various RVEs are modeled and analyzed according to their porosity. In order to quantitatively investigate the effects of microstructure, changes in effective elastic moduli and poroelastic parameters are measured via finite element (FE) analysis. The poroelastic parameters are calculated from the effective elastic moduli and the pore-pressure-induced strains. The reliability of the numerical results is verified through image-based FE models with the actual shape of pores in carbon-phenolic ablative materials. Additionally, the variation of strain energy density is measured, which can possibly be used to evaluate microstress concentrations.

Sound Transmission Loss Maximization of Multi-panel Structures Lined with Poroelastic Materials by Topology Optimization (전달손실 최대화를 위한 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.728-733
    • /
    • 2008
  • Though multi-panel structures lined with a poroelastic material have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain the optimal sequence of multi-panel structures lined with a poroelastic material yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem for a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as Interpolated functions of design variables. The designed sequences of panel-poroelastic layers were shown to be significantly affected by the target frequencies; more panel layers were used at higher target frequencies. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

  • PDF

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

Analysis of Impact Response in a Poroelastic Spinal Motion Segment FE Model according to the Disc Degeneration (다공탄성체 척추운동분절 유한요소 모델에서 추간판의 변성이 충격 거동에 미치는 영향 해석)

  • 김영은;박덕용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.188-193
    • /
    • 2003
  • To predict changes in biomechanical parameters such as intradiscal pressure, and the shock absorbing mechanism in the spinal motion segment under different impact duration/loading rates, a three dimensional L3/L4 motion segment finite element model was modified to incorporate the poroelastic properties of the motion segment. The results were analyzed under variable impact duration for normal and degenerated discs. For short impact duration and a given maximum compressive force, relatively high cancellous pore pressure was generated as compared with a case of long impact duration, although the amount of impulse was increased. In contrast relatively constant pore pressure was generated in the nucleus. Disc degeneration increased pore pressure in the disc and decreased pore pressure in the cancellous core, which is more vulnerable to compressive fracture compared with intact case.

Strain Rate Dependent Poroelastic Behavior of Bovine Vertebral Trabecular Bone

  • Hong, Jung-Hwa;Mum, Mu-Seong;Lim, Tae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1032-1040
    • /
    • 2001
  • It is widely accepted that the pressure variation of interstitial fluid is one of the most important factors in bone physiology. In order to understand the role of interstitial fluid on porous bony structure, a consideration for the biomechanical interactions between fluid and solid constituents within bone is required. In this study, a poroelastic theory was applied to investigate the elastic behavior of calf vertebral trabecular bone composed of the porous solid trabeculae and the viscous bone marrow. The poroelastic behavior of trabecular bone in a uniaxial stress condition was simulated using a commercial finite difference analysis software (FLAC, Itasca Consulting Group, USA), and tested for 5 different strain rates, i.e., 0.001, 0.01, 0.1, and 10 per second. The material properties of the calf vertebral trabecular bone were utilized from the previous experimental study. Two asymptotic poroelastic responses, the drained and undrained deformations, were predicted. From the predicted results for the simulated five strain rates, it was found that the pore pressure generation has a linearly increasing behavior when the strain rate is the highest at 10 per second, otherwise it showed a nonlinear behavior. The pore pressure generation with respect to the strain was found to be increased as the strain rate increased. The elastic moduli predicted at each strain were 208.3, 212.2, 337.6, 593.1, and 602.2 MPa, respectively. Based on the results of the present study, it was suggested that the calf vertebral trabecular bone could be modeled as a poroelastic material and its strain rate dependent material behavior could be predicted.

  • PDF

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

Behavior of trabecular bone considered by fluid phase and strain rate (유체상과 변형율속도를 고려한 해면골의 거동해석)

  • 민성기;홍정화;문무성;이진희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1078-1080
    • /
    • 2002
  • The pressure variation of interstitial fluid is one of the most important factors in bone physiology. In order to understand the role of interstitial fluid and the biomechanical interactions between fluid and solid constituents within bone, poroelastic theory was applied. The purpose of this study is to describe the behavior of calf vertebral trabecular bone composed of the porous solid trabeculae and the viscous bone marrow by using a commercial finite element analysis program based on the poroelasticity. In this study, the model was numerically tested for 5 different strain rates, i. e., 0.001, 0.01, 0.1, 1.0, and 10 per second. The material properties of the calf vertebral trabecular bone were utilized from the previous experimental study. Two asymptotic poroelastic response, the drained and undrained deformation, were predicted. From the predicted results for the simulated five strain rate, it was found that the pore pressure generation has a linearly increasing behavior when the strain rate is the highest at 10 per second, other wise it showed a nonlinear the strain rate Increased. Based on the results of the present study, it was suggested that the calf vertebral trabecular bone could be modeled as a porous material and its strain rate dependent material behavior could be predicted.

  • PDF

A poroelastic model for ultrasonic wave attenuation in partially frozen brines (부분 동결된 소금물에서의 초음파감쇠에 대한 다공성탄성 모델)

  • Matsushima, Jun;Nibe, Takao;Suzuki, Makoto;Kato, Yoshibumi;Rokugawa, Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350.600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.