• 제목/요약/키워드: pores structure

검색결과 516건 처리시간 0.028초

박막 알루미늄을 이용한 나노미터 크기의 미세기공 형성 (Fabrication of the alumina membrane with nano-sized pore array using the thin film aluminum)

  • 이병욱;이재홍;이의식;김창교
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.120-122
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using thin film aluminum deposited on silicon wafer was fabricated. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2M was used for low voltage anodization under 100V, the chromic acid with 0.1M was used for high voltage anodization over 100V. The nano-sized pores with diameter of 60~120nm was obtained by low voltage anodization of 40~90V and those of 200~300nm was obtained by high voltage anodization of 120~160V. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano-structure.

  • PDF

열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조 (Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method)

  • 김성진;박성범;박용일
    • 열처리공학회지
    • /
    • 제25권2호
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.

다공성 실리콘 기판위에 Plasma-assisted molecular beam epitaxy으로 성장한 산화아연 초박막 보호막의 발광파장 조절 연구 (Emission wavelength tuning of porous silicon with ultra-thin ZnO capping layers by plasma-assited molecular beam epitaxy)

  • 김소아람;김민수;남기웅;박형길;윤현식;임재영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.349-350
    • /
    • 2012
  • Porous silicon (PS) was prepared by electrochemical anodization. Ultra-thin zinc oxide (ZnO) capping layers were deposited on the PS by plasma-assisted molecular beam epitaxy (PA-MBE). The effects of the ZnO capping layers on the properties of the as-prepared PS were investigated using scanning electron microscopy (SEM) and photoluminescence (PL). The as-prepared PS has circular pores over the entire surface. Its structure is similar to a sponge where the quantum confinement effect (QCE) plays a fundamental role. It was found that the dominant red emission of the porous silicon was tuned to white light emission by simple deposition of the ultra-thin ZnO capping layers. Specifically, the intensity of white light emission was observed to be enhanced by increasing the growth time from 1 to 3 min.

  • PDF

New insights about coke deposition in methanol-to-DME reaction over MOR-, MFI- and FER-type zeolites

  • Migliori, Massimo;Catizzone, Enrico;Aloise, Alfredo;Bonura, Giuseppe;Gomez-Hortiguela, Luis;Frusteri, Leone;Cannilla, Catia;Frusteri, Francesco;Giordano, Girolamo
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.196-208
    • /
    • 2018
  • The effect of channel-system of zeolite on methanol-to-DME reaction was studied. Results revealed that channels size and topology affect catalyst lifetime, type and location of coke precursors. FER and MFI showed the best resistance towards coke deposition, whilst fast deactivation was observed on MOR. Although the higher concentration and strength of acid sites, FER structure formed a lower coke amount, preferably located within the pores, while coke cluster deposited on the external surface of MOR. Analysis of acid sites distribution and strength was performed during deactivation-regeneration process. Coke location assessment was also supported by molecular simulations.

Silicone Rubber Membrane의 제조 및 기공특성 (Preparation of Silicone Rubber Membrane and its Porosity)

  • 이승범;김형진;홍인권
    • Elastomers and Composites
    • /
    • 제30권3호
    • /
    • pp.185-194
    • /
    • 1995
  • Membrane process has been employed to separate a specific substance from gas or liquid mixture, and treat wastewater. This is due to the fact that the substance of mixture can be permeated and separated selectively by membrane. Since Initial equipment and operation costs are not expensive, membrane process has been adopted in various fields such as petroleum Industry, chemistry, polymer, electronics, foods, biochemical industry and wastewater treatment. In this study, $CaCO_3$ particles impregnated in silicone rubber network were extracted by using supercritical carbon dioxide and pore distribution of silicone $rubber-CaCO_3$ was investigated with varying amount of extract. Silicone rubber has excellent mechanical properties such as heat-resistance, cold-resistance etc. and $CaCO_3$ has microporous structure. It is possible to make silicone $rubber-CaCO_3$ composite sheets via work-intensive kneading processes. In so doing $CaCO_3$ particles become distributed and impregnated in silicone rubber network. Supercritical carbon dioxide diffuse through composite sample, then sample is swollen. $CaCO_3$ in silicone rubber network Is dissolved in supercritical carbon dioxide, and its sites become pores. Pore distribution, pore shape and surface area are observed by SEM(scanning electron microscope) micrograph and BET surface area analyzer examination respectively. Pore characteristics of membrane suggest the possibilities that the membrane can be used for process of mixture separation and wastewater treatment.

  • PDF

Preparation of Well-Dispersed Nanosilver in MIL-101(Cr) Using Double-Solvent Radiation Method for Catalysis

  • Chang, Shuquan;Liu, Chengcheng;Fu, Heliang;Li, Zheng;Wu, Xian;Feng, Jundong;Zhang, Haiqian
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850145.1-1850145.8
    • /
    • 2018
  • In this study, a double-solvent radiation method is proposed to prepare silver nanoparticles in the pores of metal-organic framework MIL-101(Cr). The results reveal that well-dispersed silver nanoparticles with a diameter of about 2 nm were successfully fabricated in the cages of monodisperse octahedral MIL-101(Cr) with a particle size of about 400 nm. The structure of MIL-101(Cr) was not destroyed during the chemical treatment and irradiation. The resulting Ag/MIL-101 exhibits excellent catalytic performance for the reduction of 4-nitrophenol. This method can be extended to prepare other single or bimetallic components inside porous materials.

토양 실트의 비정질 실리카 (Amorphous Silica in Soil Silt)

  • 정기영
    • 한국광물학회지
    • /
    • 제31권4호
    • /
    • pp.287-293
    • /
    • 2018
  • 한반도 일부 토양에서 비정질 실리카($SiO_2$) 실트 입자들이 발견되었다. 토양 연마박편의 주사전자현미경에서 관찰된 비정질 $SiO_2$ 입자는 타원형이며, 1마이크론 이하의 극미세 공극들이 입자 내부에 집중 분포한다. 입자의 비정질성은 투과전자현미경 격자상 관찰과 전자회절로 확인하였다. 이 이질적인 실트 입자들의 풍성기원 가능성을 확인하기 위하여 중국 황토고원의 풍성퇴적물인 뢰스(loess) 내 $SiO_2$ 실트입자들을 조사하였으나 유사 입자를 확인하지 못하였다. 아직 기원이 명확하진 않지만, 식물규소체나 화산재 풍화물일 가능성이 있다. 토양환경에서 비정질 $SiO_2$ 실트 입자의 장거리 이동 광물먼지(황사) 추적자로서 가능성은 낮다.

금속 이온이 교환된 석탄 비산재 유래 합성 제올라이트 물질의 암모니아 흡착성능 평가 (Evaluation of Ammonia Adsorption Capacity Using Various Metal Ion-Exchanged Zeolitic Materials Synthesized from Coal Fly Ash )

  • 박종원;곽주영;이창한
    • 한국환경과학회지
    • /
    • 제32권5호
    • /
    • pp.343-353
    • /
    • 2023
  • A zeolite material (ZCH) was synthesized from coal fly ash in an HD thermal power plant using a fusion/hydrothermal method. ZCH with high crystallinity could be synthesized at the NaOH/CFA ratio of 0.9. Ion-exchanged ZCH adsorbents for ammonia removal were prepared by ion-exchanging various cation (Cu2+, Co2+, Fe3+, and Mn2+) on the ZCH. They were used to evaluate the ammonia adsorption breakthrough curves and adsorption capacities. The ammonia adsorption capacities of the ZCH and ion-exchanged ZCHs were high in the order of Mn-ZCH > Cu-ZCH ≅ Co-ZCH > Fe-ZCH > ZCH according to NH3-TPD measurements. Mn-ZCH ion-exchanged with Mn has more Brønsted acid sites than other adsorbents. The ion-exchanged Cu2+, Co2+, Fe3+, or Mn2+ ions uniformly distributed on the surface or in the pores of the ZCH, and the number of acidic sites increased on the alumina sites to form the crystal structure of zeolite material. Therefore, when the ion-exchanged ZCH was used, the adsorption capacity for ammonia gas increased.

알루미늄 열용사 코팅된 AA5083-H321의 내식성 평가 (Corrosion Resistance Evaluation of Aluminum Thermal Spray Coated AA5083-H321)

  • 박일초;김성준;한민수
    • Corrosion Science and Technology
    • /
    • 제22권2호
    • /
    • pp.108-114
    • /
    • 2023
  • In this study, anti-corrosion effect was investigated through various electrochemical experiments after applying Al thermal spraying technology to AA5083-H321. Open circuit potential and anodic polarization curves were analyzed through electrochemical experiments in natural seawater. The shape of the surface was observed using a scanning electron microscope (SEM) and a 3D microscope before and after the experiment. Component and crystal structure were analyzed through EDS and XRD. As a result, the surface roughness of AA5083-H321 and the Al thermal sprayed coating layer increased due to surface damage caused by anodic dissolution reaction during the anodic polarization experiment. The corrosion rate of AA5083-H321 was relatively low because the Al thermal spray coating layer contained structural defects such as pores and crevices. Nevertheless, the open circuit potential of the Al thermal spray coating layer in natural seawater was measured about 0.2 V lower than that of AA5083-H321. Thus, a sacrificial anode protection effect can be expected.

Effect of activator types on cement mortar with polymeric aluminum chloride waste residue

  • Ping Xu;Yuhao Cui;Dong Han;Minxia Zhang;Yahong Ding
    • Advances in concrete construction
    • /
    • 제15권3호
    • /
    • pp.149-159
    • /
    • 2023
  • Water glass (WG) and sodium sulfate (SS) were used to prepare polymeric aluminum chloride residue cement mortar (PACRM) by single and compound blending with polymeric aluminum chloride waste residue, respectively. The structural strength and textural characteristics examinations showed that PACRM consistency increased by incorporating WG, but decreased by incorporating SS. When WG and SS were compounded, the mortar consistency initially rose before falling. The compressive strength of PACRM increased and then decreased as WG was increased. The mechanical properties of PACRM were better enhanced by SS than WG, showing no strength deterioration. The main reason for the improved mechanical properties of polymeric aluminum chloride waste residue in the presence of activators is the increased precipitation of reactive substances, such as C-S-H gels, calcium silica, and Ca(OH)2. The density of the specimens with PACRM and the degree of aggregation of hydration products were significantly enhanced by generating more hydration products in the mortar. Further, the cracks and pores were significantly reduced, and the matrix structure was continuous and dense at 5% SS doping and 3% compound doping.