DOI QR코드

DOI QR Code

Effect of activator types on cement mortar with polymeric aluminum chloride waste residue

  • Ping Xu (College of Civil Engineering, Henan Polytechnic Univ.) ;
  • Yuhao Cui (College of Civil Engineering, Henan Polytechnic Univ.) ;
  • Dong Han (Citic Heavy Industry Engineering Technology Co. LTD) ;
  • Minxia Zhang (College of Civil Engineering, Henan Polytechnic Univ.) ;
  • Yahong Ding (College of Civil Engineering, Henan Polytechnic Univ.)
  • Received : 2022.08.24
  • Accepted : 2023.02.21
  • Published : 2023.03.25

Abstract

Water glass (WG) and sodium sulfate (SS) were used to prepare polymeric aluminum chloride residue cement mortar (PACRM) by single and compound blending with polymeric aluminum chloride waste residue, respectively. The structural strength and textural characteristics examinations showed that PACRM consistency increased by incorporating WG, but decreased by incorporating SS. When WG and SS were compounded, the mortar consistency initially rose before falling. The compressive strength of PACRM increased and then decreased as WG was increased. The mechanical properties of PACRM were better enhanced by SS than WG, showing no strength deterioration. The main reason for the improved mechanical properties of polymeric aluminum chloride waste residue in the presence of activators is the increased precipitation of reactive substances, such as C-S-H gels, calcium silica, and Ca(OH)2. The density of the specimens with PACRM and the degree of aggregation of hydration products were significantly enhanced by generating more hydration products in the mortar. Further, the cracks and pores were significantly reduced, and the matrix structure was continuous and dense at 5% SS doping and 3% compound doping.

Keywords

Acknowledgement

Financial supports from the Key Science and Technology Program of Henan Province, China (No. 202102310253), the Youth Key Teacher Project of Henan Provincial Colleges and Universities (2017GGJS054), Joint Funds of the National Natural Science Foundation of China (No. U1904188), the Doctor Foundation of Henan Polytechnic University (No. B2016-67), and the Science and Technology Project of Henan Provincial Department of Transportation, China (No. 2019J-2-13) are gratefully appreciated. Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Abdel-Gawwad, H.A., Rashad, A.M. and Heikal, M. (2019), "Sustainable utilization of pretreated concrete waste in the production of one-part alkali-activated cement", J. Clean. Prod., 232, 318-328. https://doi.org/10.1016/j.jclepro.2019.05.356
  2. Abdulkareem, M., Havukainen, J., Nuortila-Jokinen, J. and Horttanainen, M. (2021), "Environmental and economic perspective of waste-derived activators on alkali-activated mortars", J. Clean. Prod., 280, 124651. https://doi.org/10.1016/j.jclepro.2020.124651
  3. Ali, B., Gulzar, M.A. and Raza, A. (2021), "Effect of sulfate activation of fly ash on mechanical and durability properties of recycled aggregate concrete", Constr. Build. Mater., 277, 122329. https://doi.org/10.1016/j.conbuildmat.2021.122329
  4. Alnahhal, M.F., Kim, T. and Hajimohammadi, A. (2021), "Waste-derived activators for alkali-activated materials: A review", Cem. Concr. Compos., 118, 103980. https://doi.org/10.1016/j.cemconcomp.2021.103980
  5. Amer, I., Kohail, M., El-Feky, M.S., Rashad, A. and Khalaf, M.A. (2021a), "A review on alkali-activated slag concrete", Ain Shams Eng. J., 12(2), 1475-1499. https://doi.org/10.1016/j.asej.2020.12.003
  6. Amer, I., Kohail, M., El-Feky, M.S., Rashad, A. and Khalaf, M.A. (2021b), "Characterization of alkali-activated hybrid slag/cement concrete", Ain Shams Eng. J., 12(1), 135-144. https://doi.org/10.1016/j.asej.2020.08.003
  7. Chen, W., Li, B., Wang, J. and Thom, N. (2021), "Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste", Cem. Concr. Res., 141, 106322. https://doi.org/10.1016/j.cemconres.2020.106322
  8. Coppola, L., Coffetti, D., Crotti, E., Gazzaniga, G. and Pastore, T. (2020), "The durability of one-part alkali-activated slag-based mortars in different environments", Sustainability, 12(9), 3561. https://doi.org/10.3390/su12093561
  9. Fang, S., Lam, E.S.S., Li, B. and Wu, B. (2020), "Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag", Constr. Build. Mater., 249, 118799. https://doi.org/10.1016/j.conbuildmat.2020.118799
  10. Jia, R. (2018), "Experimental Research on Removal of Turbidity and UV254 by Poly-aluminum Chloride (PAC)", E3S Web of Conferences, 53(3), 04006. https://doi.org/10.1051/e3sconf/20185304006
  11. Kilic, I. and Gok, S.G. (2021), "A study on investigating the properties of alkali-activated roller compacted concretes", Adv. Concrete Constr., Int. J., 12(2), 117-123. https://doi.org/10.12989/acc.2021.12.2.117
  12. Gavali, H.R., Bras, A., Faria, P. and Ralegaonkar, R.V. (2019), "Development of sustainable alkali-activated bricks using industrial wastes", Constr. Build. Mater., 215, 180-191. https://doi.org/10.1016/j.conbuildmat.2019.04.152
  13. Guo, J., Zhou, Z., Ming, Q., Huang, Z., Zhu, J., Zhang, S., Xu, J., Xi, J., Zhao, Q. and Zhao, X. (2022), "Recovering precipitates from dechlorination process of saline wastewater as poly aluminum chloride", Chem. Eng. J., 427, 131612.  https://doi.org/10.1016/j.cej.2021.131612
  14. Liu, Y., Shi, C., Zhang, Z. and Li, N. (2019), "An overview on the reuse of waste glasses in alkali-activated materials", Resour. Conserv. Recy., 144, 297-309. https://doi.org/10.1016/j.resconrec.2019.02.007
  15. Lu, C., Zhang, Z., Shi, C., Li, N., Jiao, D. and Yuan, Q. (2021), "Rheology of alkali-activated materials: A review", Cem. Concr. Compos., 121, 104061. https://doi.org/10.1016/j.cemconcomp.2021.104061
  16. Ma, C., Zhao, B., Wang, L., Long, G. and Xie, Y. (2020), "Clean and low-alkalinity one-part geopolymeric cement: effects of sodium sulfate on microstructure and properties", J. Clean. Prod., 252, 119279. https://doi.org/10.1016/j.jclepro.2019.119279
  17. Marvila, M.T., Azevedo, A.R.G.D., Matos, P.R.D., Monteiro, S.N. and Vieira, C.M.F. (2021), "Rheological and the fresh state properties of alkali-activated mortars by blast furnace slag", Mater., 14(8), 2069. https://doi.org/10.3390/ma14082069
  18. Mohamed, O.A. (2019), "A review of durability and strength characteristics of alkali-activated slag concrete", Mater., 12(8), 1198. https://doi.org/10.3390/ma12081198
  19. Moodi, F., Norouzi, S. and Dashti, P. (2021), "Mechanical properties and durability of alkali-activated slag repair mortars containing silica fume against freeze-thaw cycles and salt scaling attack", Adv. Concrete Constr., Int. J., 11(6), 493-505. https://doi.org/10.12989/acc.2021.11.6.493
  20. Nawaz, M.A., Ali, B., Qureshi, L.A., Aslam, H.M.U., Hussain, I., Masood, B. and Raza, S.S. (2020), "Effect of sulfate activator on mechanical and durability properties of concrete incorporating low calcium fly ash", Case Stud. Constr. Mater., 13, e407. https://doi.org/10.1016/j.cscm.2020.e00407
  21. Nasir, M., Johari, M.A.M., Yusuf, M.O., Maslehuddin, M. and Al-Harthi, M.A. (2020), "Effect of alkaline activators on the fresh properties and strength of silico-manganese fume-slag activated mortar", Adv. Concrete Constr., Int. J., 10(5), 403-416. https://doi.org/10.12989/acc.2020.10.5.403
  22. Rakhimova, N.R. and Rakhimov, R.Z. (2019), "Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials-a review", J. Mater. Sci. Technol., 8(1), 1522-1531. https://doi.org/10.1016/j.jmrt.2018.07.006
  23. Ruengsillapanun, K., Udtaranakron, T., Pulngern, T., Tangchirapat, W. and Jaturapitakkul, C. (2021), "Mechanical properties, shrinkage, and heat evolution of alkali activated fly ash concrete", Constr. Build. Mater., 299, 123954. https://doi.org/10.1016/j.conbuildmat.2021.123954
  24. Song, Q., Guo, M.Z. and Ling, T.C. (2022), "A review of elevated-temperature properties of alternative binders: Supplementary cementitious materials and alkali-activated materials", Constr. Build. Mater., 341, 127894. https://doi.org/10.1016/j.conbuildmat.2022.127894
  25. Sun, J., Zhang, Z., Zhuang, S. and He, W. (2020), "Hydration properties and microstructure characteristics of alkali-activated steel slag", Constr. Build. Mater., 241, 118141. https://doi.org/10.1016/j.conbuildmat.2020.118141
  26. Tong, S., Yuqi, Z. and Qiang, W. (2021), "Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems", Constr. Build. Mater., 272, 121647. https://doi.org/10.1016/j.conbuildmat.2020.121647
  27. Wei, H., Gao, B., Ren, J., Li, A. and Yang, H. (2018), "Coagulation/flocculation in dewatering of sludge: a review", Water Res., 143, 608-631. https://doi.org/10.1016/j.watres.2018.07.029
  28. You, N., Li, B., Cao, R., Shi, J., Chen, C. and Zhang, Y. (2019), "The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar", Constr. Build. Mater., 227, 116614. https://doi.org/10.1016/j.conbuildmat.2019.07.340
  29. Zhang, Q., Ji, T., Yang, Z., Wang, C. and Wu, H. (2020), "Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials", Constr. Build. Mater., 235, 117449. https://doi.org/10.1016/j.jclepro.2022.135547
  30. Zhao, Q., Ma, C., Huang, B. and Lu, X. (2023), "Development of alkali activated cementitious material from sewage sludge ash: Two-part and one-part geopolymer", J. Clean. Prod., 384, 135547. https://doi.org/10.1016/j.jclepro.2022.135547