• Title/Summary/Keyword: pore-water

Search Result 1,903, Processing Time 0.028 seconds

Preparation and Characterization of Pore-filled Membrane Based on Polypropylene with Poly(vinylbenzyl chloride) by Using in-situ Cross-linking Technique

  • Kwon, Byeong-Min;Ko, Moon-Young;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • Water softening is a very promising field for membranes and especially ultra low pressure membranes. Nanofiltration membranes based on pore-filling technology was prepared by using a new technique: the in-situ cross-linking. This route involves introducing a pre-formed polymer into the pores of a host membrane and then locking the polymer in the pores by in-situ cross-linking with an appropriate reagent. By this way, it is possible to make robust and competitive, pore-filled, anion-exchange membranes with excellent control over the properties of the incorporated gel without affecting the host membrane. In this paper, the possibilities of tuning such membranes for ultra low pressure water softening was examined by altering pore-filling chemistry (by changing cross-linking and aminating reagents). The results showed that tuning the chemistry of the pore-filling has important effects. In particularly, it had been shown that the correct selection of cross-linking reagent was not only essential to get pore-filled membranes but it could control their properties. Moreover, the aminating reagent could improve membrane performance. It was found that an increase in hydrophobicity could improve the Darcy permeability.

Estimating Hydraulic Properties of Soil from Constriction-pore Size Distribution (수축공극크기분포를 이용한 지반의 수리학적 물성치 산정)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.27-34
    • /
    • 2022
  • Since water flow in the ground depends on the pore structure composed of soil grains, equations to predict the hydraulic properties based on the grain size have low accuracy. This paper presents a methodology to compute constriction-pore size distribution by Silveria's method and estimate saturated and unsaturated hydraulic properties of soils. Well-graded soil shows a uni-modal pore size distribution, and poor-graded soil does a bimodal distribution. Among theoretical models for saturated hydraulic conductivity using pore size distribution, Marshall model is well-matched with experimental results. Model formulas for soil-water characteristic curves and unsaturated hydraulic conductivity using the pore size distribution are proposed for hydraulic analysis of unsaturated soil. Continuous research is needed to select a model suitable to estimate hydraulic properties by applying the developed model formulas to various soils.

Effect of Water and Aluminum Sulfate Mole Ratio on Pore Characteristics in Synthesis of AlO(OH) Nano Gel by Homogeneous Precipitation (균일침전에 의한 AlO(OH) 나노 겔 합성에서 물/황산알루미늄의 몰 비가 세공특성에 미치는 영향)

  • Choe, Dong-Uk;Park, Byung-Ki;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.564-568
    • /
    • 2006
  • AlO(OH) nano gel is used in precursor of ceramic material, coating material and catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of advanced application products were required. In this study, AlO(OH) nano gel was prepared through the aging and drying process of aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and aluminum sulfate solution. In this process, optimum synthetic condition of AlO(OH) nano gel having excellent pore volume as studying the effect of water and aluminum sulfate mole ratio on gel precipitates has been studied. Water and aluminum sulfate mole ratio brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties were investigated as using XRD, TEM, TG/DTA, FT-IR, and $N_2$ BET method.

Toughness and microscopic pore structure analysis of pasture fiber recycled concrete

  • Hailong Wang;Lei Wang;Hong Yang
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • In order to develop and take full advantage of pasture fiber and waste concrete, this article studied how different amounts of pasture fiber influenced the toughness and pore structure of concrete with different replacement rates of recycled fine aggregate. Pasture fiber recycled concrete constitutive equations were established under idealized stiffness and toughness damage rate, based on fracture energy and damage mechanics theories. The relationship between pore structure and toughness was studied utilizing nuclear magnetic resonance and fractal theory. The toughness of text groups (0% (JZ), 10% (ZS10), 20% (ZS20)) first increased and then decreased with increasing amounts of pasture fiber, based on the damage rate of toughness. The toughness of concrete samples with recycled fine aggregate and pasture fiber is negatively correlated to the fractal dimension of small and medium-sized pores with a pore size of 0-500 nm. At a replacement rate of 10% of the recycled fine aggregate, the fractal dimension of the air voids (r: 500-9000 nm, i.e., Lg(r) ∈ [2.7, 3.9]) shows a gradual decrease with the increase of grass fiber dosage, indicating that with such a replacement rate of the recycled fine aggregate, the increase of pasture fiber can reduce the complexity of the pore structure of the air voids (500-9000 nm).

Effective Method for Remodeling of Deteriorated Agricultural Reservoirs (노후화된 농업용 저수지의 효율적인 리모델링 방법)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.43-52
    • /
    • 2017
  • This study analyzed pore water pressure, earth pressure and settlement through laboratory model tests in order to suggest the effective remodeling method in the case of reinforcing the upstream and downstream slope of deteriorated reservoirs that has no cores and filters or is not functional. The method of remodeling the upstream slope using dredge soil is first prevent seepage by installing the core, and the leakage water can be rapidly discharged through a filter installed on the downstream slope. Therefore, it is considered a highly efficient method of remodeling that reduces piping phenomena and increasing the storage capacity of the reservoir. The variation of earth pressure without the core and filter was greater than with it, while the change largely showed in the upstream slope, the downstream slope did not show any significant changes. The remodeling method of the downstream slope with the core appeared differently pore water pressure depending on the presence of the vertical and horizontal filters. In the upstream slope, the pore water pressure rises sharply, the base and middle gradually increased, and the downstream slope appeared small. The pore water pressure of embankment with a vertical and horizontal filter will be smaller than without it. The remodeling of deteriorated reservoir that does not have the function of the filter, the vertical filter must be installed in a position that is higher than the expected seepage line by removing portions of the downstream slopes. Since the horizontal filter is an important structure that provides stable drainage during an earthquake or concentrated leak, it is necessary to examine any change in the seepage characteristics depending on the filter intervals via three-dimensional finite element analysis, and it should be connected to the tow-drain to reduce the possibility of the collapse of the reservoir.

Behavior of Buried Geo-structures due to Increase of Excess Pore Water Pressure Ratio During Earthquakes (지진발생시 과잉간극수압비의 증가에 따른 지중 매설구조물의 거동)

  • Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.27-37
    • /
    • 2011
  • Uplift phenomenon occurs when the apparent unit weight of buried geo-structures becomes smaller than that of the liquefied backfill due to the increase of an excess pore water pressure during strong earthquakes. In order to explain the relationship between the uplift displacement of the buried geo-structures and the increase of the excess pore water pressure ratio in backfill, dynamic centrifuge model tests are conducted. In the present study, primary and secondary factors against uplift behavior of the buried geo-structures are considered in the dynamic centrifuge model tests. Among these factors, the most important factors affecting the increase in the excess pore water pressure ratio were the ground water depth, the relative density of backfill, and the amplitude of the input acceleration, which were also largely affect the uplift amount of the buried geo-structures.

Studies on the Pore of Coating Layer and Printability(III) -Effects of Properties of Latices on Pore of Coating Layer- (도공층의 공극과 인쇄적성에 관한 연구(제3보) -라텍스의 특성이 미치는 영향-)

  • 이용규;김창근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.41-48
    • /
    • 2001
  • This paper was made to evaluate the effect of the type of latex for coating on the printability by investigating the structure of pore such as the pore fraction, the number of pores, pore size and distribution of coated paper. The coated structure is mainly depend on the results of interaction between pigment and binder. It means that the structure of pore formed is chiefly affected by the type of latex. This physical properties of pore have a close relation with ink set-off associated with the drying rate, the speed of penetration of ink into base paper and printing gloss. Therefore it was necessary to find out the relationship between pore structure and the performance of printability by modifying the type of latex to vary the pore structure of coated paper. Acrylic latex was superior to S/B latex in the sedimentation volume, compressibility, smoothness, pore fraction and its number, the weight of transferred ink onto the coated paper and ink repellance. In contrast, water retention and ink setting were not good. in the comparison of anionic and amphoteric latex, amphoteric latex showed better performance in the thickness, smoothness, pore fraction and its number, pore size, the weight of ink transmitted and K&N ink receptivity, etc.

  • PDF

Evaluation of Turbidity Removal Efficiency on under Flow Water by Pore Controllable Fiber Filtration (공극제어형 섬유사 여과기를 이용한 복류수의 탁도 제거효율 평가)

  • Kim, Jeong-Hyun;Bae, Chul-Ho;Kim, Chung-Hwan;Park, No-Suk;Lee, Sun-Ju;Anh, Hyo-Won;Huh, Hyun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • It was evaluated that the effect of turbidity removal by Pore Controllable Fiber Filter(PCF) installed in NS(Naksang) small water treatmant plant(system) using under flow water as raw water in the study. The results of the study are as the followings. Firstly, the removal efficiency of turbidity by PCF without coagulation(in operation mode not using coagulants) was mostly below 20 percent. On the other hand, when operation using proper coagulants, that of turbidity was mostly over 80 percent. Secondly, slow sand filtration after PCF, total turbidity removal efficiency of final treated water was 84.3 percent, and the contribution by PCF was 57.1 percent and that of slow sand filtration was 27.7 percent. Therefore the introduction of PCF as pre-treatment process would be helpful to reduce the loading of high turbidity of slow sand filtration. Thirdly, the results of particle counter measurements showed that when operated PCF with coagulants, fine flocs captured or adsorbed at the pore of PCF were flow out into the effluents from 120 minutes after backwashing because of the increase of headloss of PCF. Therefore the decision of backwashing time should made consideration into the outflow of fine flocs from PCF. Fourth, coagulant dosages on PCF at the same turbidity was largely variable because of the effect of the raw water characteristics and the turbidity increase velocity at rainy days, therefore flexible coagulant dosages should be considered rather than fixed coagulant dosage by the influent jar-test result.

Thaw consolidation behavior of frozen soft clay with calcium chloride

  • Wang, Songhe;Wang, Qinze;Xu, Jian;Ding, Jiulong;Qi, Jilin;Yang, Yugui;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.189-203
    • /
    • 2019
  • Brine leakage is a common phenomenon during construction facilitated by artificial freezing technique, threatening the stability of frozen wall due to the continual thawing of already frozen domain. This paper takes the frequently encountered soft clay in Wujiang District as the study object, and remolded specimens were prepared by mixing calcium chloride solutions at five levels of concentration. Both the deformation and pore water pressure of frozen specimens during thawing were investigated by two-stage loading tests. Three sections were noted from the changes in the strain rate of specimens during thawing at the first-stage load, i.e., instantaneous, attenuated, and quasi-stable sections. During the second-stage loading, the deformation of post-thawed soils is closely correlated with the dissipation of pore water pressure. Two characteristic indexes were obtained including thaw-settlement coefficient and critical water content. The critical water content increases positively with salt content. The higher water content of soil leads to a larger thaw-settlement coefficient, especially at higher salt contents, based on which an empirical equation was proposed and verified. The normalized pore water pressure during thawing was found to dissipate slower at higher salt contents, with a longer duration to stabilize. Three physical indexes were experimentally determined such as freezing point, heat conductivity and water permeability. The freezing point decreases at higher salt contents, especially as more water is involved, like the changes in heat conductivity. The water permeability maintains within the same order at the considered range of salt contents, like the development of the coefficient of consolidation. The variation of the pore volume distribution also accounts for this.

A study for application plan of rational residual water pressure on the tunnel linings (터널 라이닝에 작용하는 합리적인 잔류수압 적용방안 검토)

  • Jung, Kuk-Young;Kim, Ji-Yeop;Kim, Ji-Hun;Moon, Hoon-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.463-499
    • /
    • 2011
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most tunnels are located under the ground water level. In case of a drainage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, residual pore water pressure can be developed on the lining due to the deterioration of the drainage system. In this study, the water pressure distribution under obstruction condition of drainage material and conduit on the tunnel is numerically investigated using the ICFEP program and compared with the current value being applied to the residual water pressure for rational application plan of residual water pressure on the tunnel linings.