DOI QR코드

DOI QR Code

Toughness and microscopic pore structure analysis of pasture fiber recycled concrete

  • Hailong Wang (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University) ;
  • Lei Wang (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University) ;
  • Hong Yang (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University)
  • Received : 2021.11.10
  • Accepted : 2023.11.15
  • Published : 2023.09.25

Abstract

In order to develop and take full advantage of pasture fiber and waste concrete, this article studied how different amounts of pasture fiber influenced the toughness and pore structure of concrete with different replacement rates of recycled fine aggregate. Pasture fiber recycled concrete constitutive equations were established under idealized stiffness and toughness damage rate, based on fracture energy and damage mechanics theories. The relationship between pore structure and toughness was studied utilizing nuclear magnetic resonance and fractal theory. The toughness of text groups (0% (JZ), 10% (ZS10), 20% (ZS20)) first increased and then decreased with increasing amounts of pasture fiber, based on the damage rate of toughness. The toughness of concrete samples with recycled fine aggregate and pasture fiber is negatively correlated to the fractal dimension of small and medium-sized pores with a pore size of 0-500 nm. At a replacement rate of 10% of the recycled fine aggregate, the fractal dimension of the air voids (r: 500-9000 nm, i.e., Lg(r) ∈ [2.7, 3.9]) shows a gradual decrease with the increase of grass fiber dosage, indicating that with such a replacement rate of the recycled fine aggregate, the increase of pasture fiber can reduce the complexity of the pore structure of the air voids (500-9000 nm).

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support of this work provided by the National Natural Science Foundation of China (Grant No.52069024) and Technology Projects of Inner Mongolia Autonomous Region of China (Grant no. 2021ZD0007).

References

  1. Ajouguim, S., Stefanidou, M., Abdelouahdi, K., Waqif, M. and Saadi, L. (2020), "Influence of treated bio-fibers on the mechanical and physical properties of cement mortars", Eur. J. Environ. Civ. Eng., 26(8), 3120-3135. https://doi.org/10.1080/19648189.2020.1782773
  2. Akcaoglu, T., Tokyay, M. and Celik, T. (2004), "Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression", Cem. Concrete Compos., 26(6), 633-638. https://doi.org/10.1016/S0958-9465(03)00092-1
  3. Akinyemi, B.A. and Dai, C. (2020), "Development of banana fibers and wood bottom ash modified cement mortars", Constr. Build. Mater., 241, 118041. https://doi.org/10.1016/j.conbuildmat.2020.118041
  4. Ba, M.F., Qian, C.X., Guo, X.J. and Han, X.Y. (2011), "Effects of steam curing on strength and porous structure of concrete with low water/binder ratio", Constr. Build. Mater., 25(1), 123-128. https://doi.org/10.1016/j.conbuildmat.2010.06.049
  5. Bazant, Z.P. and Kazemi, M.T. (1991), "Size dependence of concrete fracture energy determined by RILEM work-offracture method", Int. J. Fract., 51(2), 121-138. https://doi.org/10.1007/BF00033974
  6. Cantero, B., Bravo, M., de Brito, J., del Bosque, I.S. and Medina, C. (2020), "Mechanical behaviour of structural concrete with ground recycled concrete cement and mixed recycled aggregate", J. Cleaner Prod., 275, 122913. https://doi.org/10.1016/j.jclepro.2020.122913
  7. Chandrasekar, M., Ishak, M.R., Sapuan, S.M., Leman, Z. and Jawaid, M. (2017), "A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption", Plast. Rubber Compos., 46(3), 119-136. https://doi.org/10.1080/14658011.2017.1298550
  8. Cheng, Z., Yan, W., Sui, Z., Tang, J., Yuan, C., Chu, L. and Feng, H. (2021), "Effect of fiber content on the mechanical properties of engineered cementitious composites with recycled fine aggregate from clay brick", Materials, 14(12), 3272. https://doi.org/10.3390/ma14123272
  9. Cui, W., Liu, M.M., Song, H.F., Guan, W. and Yan, H.M. (2020), "Influence of initial defects on deformation and failure of concrete under uniaxial compression", Eng. Fract. Mech., 234, 107106. https://doi.org/10.1016/j.engfracmech.2020.107106
  10. Dalvi, M.J.D., Kalwane, U.B. and Pasnur, M.P. (2016), "Effect of fibre length and percentage of sisal on strength of concrete", Multi. J. Res. Eng. Tech., 3(1), 923-932.
  11. Ding, Y., Wang, Q., Pacheco-Torgal, F. and Zhang, Y. (2020), "Hybrid effect of basalt fiber textile and macro polypropylene fiber on flexural load-bearing capacity and toughness of twoway concrete slabs", Constr. Build. Mater., 261, 119881. https://doi.org/10.1016/j.conbuildmat.2020.119881
  12. Evangelista, L. and de Brito, J. (2017), "Flexural behaviour of reinforced concrete beams made with fine recycled concrete aggregates", KSCE J. Civil Eng., 21(1), 353-363. https://doi.org/10.3151/jact.5.259
  13. Fathi, H. and Fathi, A. (2016), "Sugar beet fiber and Tragacanth gum effects on concrete", J. Cleaner Prod., 112, 808-815. https://doi.org/10.1016/j.jclepro.2015.06.072
  14. Feng, B., Liu, J., Lu, Z., Zhang, M. and Tan, X. (2023), "Study on properties and durability of alkali activated rice straw fibers cement composites", J. Buil. Eng., 63, 105515. https://doi.org/10.1016/j.jobe.2022.105515
  15. Gao, D. and Wang, F. (2021), "Effects of recycled fine aggregate and steel fiber on compressive and splitting tensile properties of concrete", J. Build. Eng., 102631. https://doi.org/10.1016/j.jobe.2021.102631
  16. Gao, D., Gu, Z., Pang, Y. and Yang, L. (2021), "Mechanical properties of recycled fine aggregate concrete incorporating different types of fibers", Constr. Build. Mater., 298, 123732. https://doi.org/10.1016/j.conbuildmat.2021.123732
  17. Geremew, A., De Winne, P., Demissie, T.A. and De Backer, H. (2021), "Treatment of natural fiber for application in concrete pavement", Adv. Civil Eng., 2021, 1-13. https://doi.org/10.1155/2021/6667965
  18. Guo, H., Jiang, L., Tao, J., Chen, Y., Zheng, Z. and Jia, B. (2021), "Influence of a hybrid combination of steel and polypropylene fibers on concrete toughness", Constr. Build. Mater., 275, 122132. https://doi.org/10.1016/j.conbuildmat.2020.122132
  19. Huang, J., Tian, G., Huang, P. and Chen, Z. (2020), "Flexural Performance of Sisal Fiber Reinforced Foamed Concrete under Static and Fatigue Loading", Materials, 13(14), 3098. https://doi.org/10.3390/ma13143098
  20. Hwang, C.L., Tran, V.A., Hong, J.W. and Hsieh, Y.C. (2016), "Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites", Constr. Build. Mater., 127, 984-992. https://doi.org/10.1016/j.conbuildmat.2016.09.118
  21. Islam, M.S. and Ahmed, S.J. (2018), "Influence of jute fiber on concrete properties", Constr. Build. Mater., 189, 768-776. https://doi.org/10.1016/j.conbuildmat.2018.09.048
  22. JGJ 55-2011(2011), Specification for Mix Proportion Design of Ordinary Concrete, China Architecture and Building Press, Beijing, China.
  23. Jiang, D., An, P., Cui, S., Xu, F., Tuo, T., Zhang, J. and Jiang, H. (2018), "Effect of leaf fiber modification methods on mechanical and heat-insulating properties of leaf fiber cementbased composite materials", J. Build. Eng., 19, 573-583. https://doi.org/10.1016/j.jobe.2018.05.028
  24. Jiang, D., An, P., Cui, S., Sun, S., Zhang, J. and Tuo, T. (2020), "Effect of modification methods of wheat straw fibers on water absorbency and mechanical properties of wheat straw fiber cement-based composites", Adv. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/5031025
  25. Kachanov, M. and Montagut, E. (1986), "Interaction of a crack with certain microcrack arrays", Eng. Fract. Mech., 25(5-6), 625-636. https://doi.org/10.1016/0013-7944(86)90028-7
  26. Kapoor, K., Singh, S.P. and Singh, B. (2016), "Durability of selfcompacting concrete made with recycled concrete aggregates and mineral admixtures", Constr. Build. Mater., 128, 67-76. https://doi.org/10.1016/j.conbuildmat.2016.10.026
  27. Kisku, N., Joshi, H., Ansari, M., Panda, S.K., Nayak, S. and Dutta, S.C. (2017), "A critical review and assessment for usage of recycled aggregate as sustainable construction material", Constr. Build. Mater., 131, 721-740. https://doi.org/10.1016/j.conbuildmat.2016.11.029
  28. Leite, M.B. and Monteiro, P.J.M. (2016), "Microstructural analysis of recycled concrete using X-ray microtomography", Cem. Concr. Res., 81, 38-48. https://doi.org/10.1016/j.cemconres.2015.11.010
  29. Lemaitre, J. (1984), "How to use damage mechanics", Nucl. Eng. Des., 80(2), 233-245. https://doi.org/10.1016/0029-5493(84)90169-9
  30. Li, Z., Wang, L. and Wang, X. (2004), "Compressive and flexural properties of hemp fiber reinforced concrete", Fibers Polym., 5(3), 187-197. https://doi.org/10.1007/BF02902998
  31. Li, Y., Shen, A. and Wu, H. (2020), "Fractal dimension of basalt fiber reinforced concrete (BFRC) and its correlations to pore structure, strength and shrinkage", Materials, 13(14), 3238. https://doi.org/10.3390/ma13143238
  32. Li, B., Hou, S., Duan, Z., Li, L. and Guo, W. (2021a), "Rheological behavior and compressive strength of concrete made with recycled fine aggregate of different size range", Constr. Build. Mater., 268, 121172. https://doi.org/10.1016/j.conbuildmat.2020.121172
  33. Li, L., Guan, J., Yuan, P., Yin, Y. and Li, Y. (2021b), "A Weibull distribution-based method for the analysis of concrete fracture", Eng. Fract. Mech., 256, 107964. https://doi.org/10.1016/j.engfracmech.2021.107964
  34. Liu, J., Ou, G., Qiu, Q., Chen, X., Hong, J. and Xing, F. (2017), "Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition", Constr. Build. Mater., 146, 493501. https://doi.org/10.1016/j.conbuildmat.2017.04.018
  35. Liu, Q., Shen, X.D., Dong, R.X., Wei, L.S. and Xue, H.J. (2019), "Grey entropy analysis on effect of pore structure on compressive strength of aeolian sand concrete", Trans. Chin. Soc. Agric. Eng., 35(10), 108114. https://doi.org/10.11975/j.issn.10026819.2019.10.014
  36. Liu, H., Zhang, Y., Tong, R., Zhu, Z. and Lv, Y. (2020), "Effect of nanosilica on impermeability of cement-fly ash system", Adv. Civ. Eng., 2020, 1243074. https://doi.org/10.1155/2020/1243074
  37. Liu, L., He, Z., Cai, X. and Fu, S. (2021), "Application of lowfield NMR to the pore structure of concrete", Appl. Magn. Reson., 52(1), 15-31. https://doi.org/10.1007/s00723-020-01229-7
  38. Lu, B., Shi, C., Cao, Z., Guo, M. and Zheng, J. (2019), "Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete", J. Cleaner Prod., 233, 421-428. https://doi.org/10.1016/j.jclepro.2019.05.350
  39. Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M., Parija, S., Nayak, S.K. and Tripathy, S.S. (2003), "Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites", Compos. Sci. Technol., 63(10), 1377-1385. https://doi.org/10.1016/S0266-3538(03)00084-8
  40. Mukharjee, B.B. and Barai, S.V. (2015), "Characteristics of sustainable concrete incorporating recycled coarse aggregates and colloidal nano-silica", Adv. Concrete Constr., Int. J., 3(3), 187-202. http://dx.doi.org/10.12989/acc.2015.3.3.187
  41. Mwaikambo, L.Y. and Ansell, M.P. (1999), "The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement", Die angewandte makromolekulare Chemie, 272(1), 108-116. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108:: AID-APMC108>3.0.CO;2-9
  42. Nam, J., Kim, G., Yoo, J., Choe, G., Kim, H., Choi, H. and Kim, Y. (2016), "Effectiveness of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete", Materials, 9(3), 131. https://doi.org/10.3390/ma9030131
  43. Niu, D., Huang, D., Zheng, H., Su, L., Fu, Q. and Luo, D. (2019), "Experimental study on mechanical properties and fractal dimension of pore structure of basalt-polypropylene fiberreinforced concrete", Appl. Sci., 9(8), 1602. https://doi.org/10.3390/app9081602
  44. Nuaklong, P., Wongsa, A., Boonserm, K., Ngohpok, C., Jongvivatsakul, P., Sata, V., Sukontasukkul, P. and Chindaprasirt, P. (2021), "Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber", J. Build. Eng., 41, 102403. https://doi.org/10.1016/j.jobe.2021.102403
  45. Onuaguluchi, O. and Banthia, N. (2016), "Plant-based natural fibre reinforced cement composites:A review", Cem. Concr. Compos., 68, 96-108. https://doi.org/10.1016/j.cemconcomp.2016.02.014
  46. Rajhans, P., Panda, S.K. and Nayak, S. (2018a), "Sustainable self compacting concrete from C&D waste by improving the microstructures of concrete ITZ", Constr. Build. Mater., 163, 557-570. https://doi.org/10.1016/j.conbuildmat.2017.12.132
  47. Rajhans, P., Panda, S.K. and Nayak, S. (2018b), "Sustainability on durability of self compacting concrete from C&D waste by improving porosity and hydrated compounds: A microstructural investigation", Constr. Build. Mater., 174, 559-575. https://doi.org/10.1016/j.conbuildmat.2018.04.137
  48. Rajhans, P., Kisku, N., Nayak, S. and Panda, S.K. (2020), "Sustainable self compacting acid and sulphate resistance RAC by two stage mixing approaches", Adv. Concrete Constr., Int. J., 9(1), 55-70. https://doi.org/10.12989/acc.2020.9.1.055
  49. Saha, S. and Rajasekaran, C. (2016), "Mechanical properties of recycled aggregate concrete produced with portland pozzolana cement", Adv. Concrete Constr., Int. J., 4(1), 27-35. https://doi.org/10.12989/acc.2016.4.1.027
  50. Sanchez, I., Novoa, X.R., De Vera, G. and Climent, M.A. (2008), "Microstructural modifications in Portland cement concrete due to forced ionic migration tests. Study by impedance spectroscopy", Cem. Concr. Res., 38(7), 1015-1025. https://doi.org/10.1016/j.cemconres.2008.03.012
  51. Sedan, D., Pagnoux, C., Smith, A. and Chotard, T. (2008), "Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction", J. Eur. Ceram. Soc., 28(1), 183-192. https://doi.org/10.1016/j.jeurceramsoc.2007.05.019
  52. Sellami, A. Merzoud, M and Amziane, S. (2013), "Improvement of mechanical properties of green concrete by treatment of the vegetals fibers", Constr. Build. Mater., 47, 1117-1124. https://doi.org/10.1016/j.conbuildmat.2013.05.073
  53. Sudin, R. and Swamy, N. (2006), "Bamboo and wood fibre cement composites for sustainable infrastructure regeneration", J. Mater. Sci., 41(21), 6917-6924. https://doi.org/10.1007/s10853-006-0224-3
  54. Terai, M. and Minami, K. (2012), "Basic study on mechanical properties of bamboo fiber reinforced concrete", Glob. Think. Struct. Eng. Recent Achiev., 8, 17-24.
  55. Verma, S.K. and Ashish, D.K. (2017), "Mechanical behavior of concrete comprising successively recycled concrete aggregates", Adv. Concrete Constr., Int. J., 5(4), 303-311. https://doi.org/10.12989/acc.2017.5.4.303
  56. Walton, P.L. and Majumdar, A.J. (1975), "Cement-based composites with mixtures of different types of fibres", Composites, 6(5), 209-216. https://doi.org/10.1016/0010-4361(75)90416-4
  57. Wang, X.X., Shen, X.D., Wang, H.L. and Gao, C. (2015), "Nuclear magnetic resonance analysis of concrete-lined channel freeze-thaw damage", J. Ceram. Soc. Jpn., 123(1433), 43-51. http://doi.org/10.2109/jcersj2.123.43
  58. Wang, G., Shen, J., Liu, S., Jiang, C. and Qin, X. (2019), "Threedimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory", Int. J. Rock Mech. Min., 123, 104082. https://doi.org/10.1016/j.ijrmms.2019.104082
  59. Wijayasundara, M., Mendis, P. and Crawford, R.H. (2018), "Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete", J. Clean. Prod., 174, 591-604. https://doi.org/10.1016/j.jclepro.2017.10.301
  60. Yan, L., Chouw, N., Huang, L. and Kasal, B. (2016), "Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites", Constr. Build. Mater., 112, 168-182. https://doi.org/10.1016/j.conbuildmat.2016.02.182
  61. Yang, X., Wang, F., Yang, X. and Zhou, Q. (2017), "Fractal dimension in concrete and implementation for mesosimulation", Constr. Build. Mater., 143, 464-472. https://doi.org/10.1016/j.conbuildmat.2017.03
  62. Yaragal, S.C. and Roshan, M.A. (2017), "Usage potential of recycled aggregates in mortar and concrete", Adv. Concrete Constr., Int. J., 5(3), 201-219. https://doi.org/10.12989/acc.2017.5.3.201
  63. Yaragal, S.C., Teja, D.C. and Shaffi, M. (2016), "Performance studies on concrete with recycled coarse aggregates", Adv. Concrete Constr., Int. J., 4(4), 263-281. https://doi.org/10.12989/acc.2016.4.4.263
  64. Zaetang, Y., Sata, V., Wongsa, A. and Chindaprasirt, P. (2016), "Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate", Constr. Build. Mater., 111, 15-21. https://doi.org/10.1016/j.conbuildmat.2016.02.060
  65. Zhou, C. and Chen, Z. (2017), "Mechanical properties of recycled concrete made with different types of coarse aggregate", Constr. Build. Mater., 134, 497-506. https://doi.org/10.1016/j.conbuildmat.2016.12.163