DOI QR코드

DOI QR Code

Estimating Hydraulic Properties of Soil from Constriction-pore Size Distribution

수축공극크기분포를 이용한 지반의 수리학적 물성치 산정

  • Shin, Hosung (Dept. of Civil & Environmental Engrg., Univ. of Ulsan)
  • 신호성 (울산대학교 건설환경공학부)
  • Received : 2022.02.21
  • Accepted : 2022.02.27
  • Published : 2022.03.31

Abstract

Since water flow in the ground depends on the pore structure composed of soil grains, equations to predict the hydraulic properties based on the grain size have low accuracy. This paper presents a methodology to compute constriction-pore size distribution by Silveria's method and estimate saturated and unsaturated hydraulic properties of soils. Well-graded soil shows a uni-modal pore size distribution, and poor-graded soil does a bimodal distribution. Among theoretical models for saturated hydraulic conductivity using pore size distribution, Marshall model is well-matched with experimental results. Model formulas for soil-water characteristic curves and unsaturated hydraulic conductivity using the pore size distribution are proposed for hydraulic analysis of unsaturated soil. Continuous research is needed to select a model suitable to estimate hydraulic properties by applying the developed model formulas to various soils.

지반내 물의 흐름은 입자 사이의 공극 분포에 의존하므로 입자의 크기를 이용한 수리학적 물성치의 예측은 정확도가 낮다. 본 논문은 Silveria의 방법을 이용하여 입도분포곡선으로부터 수축 공극크기분포를 산정하고, 포화-불포화 수리학적 물성치를 산정하는 방법을 제시하였다. 입도분포가 양호한 흙은 단봉의 공극크기분포를 보이고, 입도분포가 불량한 흙은 쌍봉의 공극크기분포를 보였다. 공극크기분포를 이용한 이론적 포화투수계수 모델식 중에서 Marshall 모델이 실내실험결과와 가장 부합되었다. 불포화토 수리해석에 필요한 함수특성곡선과 불포화투수계수에 대한 모델식을 공극크기분포를 이용하여 제안하였다. 개발된 모델식을 다양한 흙에 적용하여 수리학적 물성치의 예측에 적합한 모델을 선정하는 지속적인 연구가 필요하다.

Keywords

Acknowledgement

본 연구는 한국연구재단 개인연구지원사업(NRF-2019R1A2C200441913)의 연구 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Allen, T.M. (2017), Stormwater infiltration in highway embankments - Saturated hydraulic conductivity estimation for uncompacted and compacted soils. Washington State Department of Transportation.
  2. Burdine, N.T. (1953), "Relative Permeability Calculations from Pore Size Distribution Data", Transactions of the Metallurgical Society of AIME, Vol.198, pp.71-78.
  3. Cabalar, A. and Akbulut, N. (2016), "Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape", SpringerPlus, Vol.5, pp.820. https://doi.org/10.1186/s40064-016-2472-2
  4. Carmen, P. C. (1937), "Fluid Flow through Granular Beds", Trans. Inst. Chem. Eng., Vol.12, pp.150-166.
  5. Carrier, W.D. (2003), "Goodbye, Hazen; Hello, Kozeny-Carman", Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, pp.1054-1056. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1054)
  6. Childs, E.C. and Collis-George, N. (1950), "The Permeability of Porous Materials", Proceedings, Royal Society of London, Vol. A201, pp.392-405.
  7. Fredlund, D.G., Rahardjo, H., and Fredlund, M.D. (2012), Unsaturated Soil Mechanics in Engineering Practice, John Wiley & Sons.
  8. Fredlund, D.G. and Xing, A. (1994), "Equations for the Soil-water Characteristic Curve", Canadian Geotechnical Journal, Vol.31, pp.521-532. https://doi.org/10.1139/t94-061
  9. Garcia-Bengochea, I. (1978), The relation between permeability and pore size distribution of compacted clayey silts. Indiana Department of Transportation and Purdue University.
  10. Hazen, A. (1892), "Some physical properties of sands and gravels, with special reference to their use in filtration", 24th annual report, Massachusetts State Board of Health, Vol.34, pp.539-556.
  11. Humes, C., Lafleur, J., and Rollin, A. (1996), "A New Approach to Compute the Void Size Distribution Curves of Protective Filters", In Proceedings of Geofilters, Vol.96, pp.57-66.
  12. Jaafar, R. and Likos, W. (2014), "Pore-scale Model for Estimating Saturated and Unsaturated Hydraulic Conductivity from Grain Size Distribution", Journal of Geotechnical and Geoenvironmental Engineering, Vol.140, 04013012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001031
  13. Khilar, K.C. and Fogler, H.C. (1998), Migration of fines in porous media, Vol.12, Kluwer, Dordrecht, Netherlands.
  14. Kozeny, J. (1927), "Uber Kapillare Leitung des Wassers in Boden", Sitzungsber Akad. Wiss. Wien Math. Naturwiss. Kl., Vol.136, pp. 271-306.
  15. Locke, M. (2001), Analytical and laboratory modelling of granular filters for embankment dams, University of Wollongong, Ph.D Thesis.
  16. Marshall, T.J. (1958), "A Relation between Permeability and Size Distribution of Pores", Journal of Soil Science, Vol.9, No.1, pp.1-8. https://doi.org/10.1111/j.1365-2389.1958.tb01892.x
  17. Mavko, G., Mukerji, T., and Dvorkin, J. (2009), Rock physics handbook tools for seismic analysis in porous media, Cambridge University Press.
  18. Mitchell, J.K. and Soga, K. (2005), Fundamentals of soil behavior, John Wiley & Sons.
  19. Mualem, Y. (1976), "A New Model for Predicting Hydraulic Conductivity of Unsaturated Porous Media", Water Resources Research, Vol.12, pp.513-522. https://doi.org/10.1029/WR012i003p00513
  20. Nimmo, J.R. (2004), "Porosity and Pore Size Distribution", Encyclopedia of Soils in the Environment, Vol.3, pp.295-303.
  21. Rockhold, M.L. (1984), Characterization of unsaturated hydraulic conductivity, Kansas State University, Master Thesis.
  22. Scheidegger, A.E. (1974), The physics of flow through porous media, University of Toronto Press.
  23. Shah, R. and London, A. (1978), Laminar flow forced convection in ducts, Elsevier.
  24. Silveira, A. (1965), "An Analysis of the Problem of Washing through in Protective Filters", Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, pp. 551-555.
  25. Silveira, A., de Lorena Peixoto, T., and Nogueira, J. (1975), "On Void Size Distribution of Granular Materials", Proceedings of 5th Pan-American Conference on Soil Mechanics and Foundation Engineering, pp.161-176.
  26. Sjah, J. and Vincens, E. (2013), "Determination of the Constriction Size Distribution of Granular Filters by Filtration Tests", International Journal for Numerical and Analytical Methods in Geomechanics. Vol.37, pp.1231-1246. https://doi.org/10.1002/nag.2076
  27. Teng, J., Kou, J., Zhang, S., and Sheng, D. (2019), "Evaluating the Influence of Specimen Preparation on Saturated Hydraulic Conductivity Using Nuclear Magnetic Resonance Technology", Vadose Zone Journal, Vol.18, pp.10.2136.
  28. Uzielli, M., Lacasse, S., Nadim, F., and Phoon, K.K. (2006), "Soil Variability Analysis for Geotechnical Practice", Characterisation and Engineering Properties of Natural Soils. Vol.3, pp.1653-1752.
  29. Zhang, L. and Chen, Q. (2005), "Predicting Bimodal Soil-water Characteristic Curves", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.5, pp.666-670. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(666)