• Title/Summary/Keyword: pore structure

Search Result 1,286, Processing Time 0.037 seconds

Surface Milling for the Study of Pore Structure in Shale Reservoirs (셰일 저류층 내 공극 구조 연구를 위한 표면 밀링)

  • Park, Sun Young;Choi, Jiyoung;Lee, Hyun Suk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2020
  • Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.

Effect of pore characteristics of activated carbon on adsorption of natural organic matter (활성탄의 세공이 자연유기물질의 흡착에 미치는 영향)

  • Pak, Jung-Sun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.249-255
    • /
    • 2011
  • It is complicate problem to optimize removing natural organic matter (NOM) by activated carbon in drinking water treatment because the activated carbon has heterogeneous surface area and pore structure. Seven different coals based activated carbons which have different pore structures were used in the study. Sand filtered effluents which normally used as GAC adsorber influent were used. The molecular weight distribution showed that most of the NOM was bigger than 10,000Da. In this study, systematical approaches such as characteristics of surface area and pore volume were evaluated on NOM adsorption. Especially, the adsorption capacities for NOM were evaluated by effect of micro-pores and meso-pores in surface area and pore structure. The results show that the higher ratio of meso-pore compare to the micro-pore has not only the better adsorption capacities for NOM but also the higher strongly-adsorbable fraction. Therefore, the overall adsorption capacity is increased with higher meso-pore ratio with existing of reasonable micro-pore surface area and volume.

Pore Structure and Permeability of Concrete Containing Pozzolanic Materials (포졸란 함유 콘크리트의 공극구조와 투과특성)

  • 김재신;소형석;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.159-162
    • /
    • 1999
  • The paper presents results of an investigation on the permeability characteristics and pore structure of concrete containing different levels of fly ash, silica fume, or blast furnace slag. The total cementitious content was 351kg/㎥, and the water/cementitious materials ratio was 0.55. The porosity and pore structure of representative pastes of the matrix were measured using mercury intrusion porosimetry, and the permeability characteristics of concrete were also determined by water and oxygen permeability, chloride ion penetration. The results show that significant reduction in permeability of concrete containing pozzolanic materials due to formation of a discontinuous macro-pore system which inhibits flow. And, the permeability of concrete and pore structure(capillary porosity or total porosity) shows linear relationship.

  • PDF

Char Gasification Model Including the Effects of Pore Structure and Solid Reaction Product (기공 구조와 반응 부산물의 영향을 고려한 촤의 가스화 모델)

  • Chi, Jun-Hwa
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.328-339
    • /
    • 2010
  • A new gasification model for coal char was developed considering the effects of pore structure and solid reaction product (ash) and compared with conventional models. Among various parameters reflecting microscopic pore structure, initial pore surface per unit volume of char was found to have the largest effect on carbon conversions. Reaction studies showed that the proposed model can predict carbon conversion more accurately over a broader range of reaction degree compared to the conventional models. Therefore the model proposed in this study would be useful for the design of pilot or commercial scale gasifiers.

Effect of Solidification Condition of Sublimable Vehicles on the Pore Characteristics in Freeze Drying Process (동결건조 공정에서 동결제의 응고조건이 기공특성에 미치는 영향)

  • Suk, Myung-Jin;Kim, Ji Soon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.366-370
    • /
    • 2014
  • The present study demonstrates the effect of solidification condition on the pore structure in freeze drying process using the slurries of CuO/sublimable vehicles. Camphene and Camphor-45 wt% naphthalene based slurries with 14 vol% CuO powder were frozen into a mold at $-25^{\circ}C$, followed by sublimation at room temperature. The green bodies were hydrogen-reduced and sintered at $500^{\circ}C$ for 1 h. The porous Cu specimen, frozen the CuO/camphene slurry into the heated mold of the upper part, showed large pores with unidirectional pore channels and small pores in their internal wall. Also, it was observed that the size of large pores was decreasing near the bottom part of specimen. The change of pore structure depending on the freezing condition was explained by the nucleation behavior of camphene crystals and rearrangement of solid powders during solidification. In case of porous Cu prepared from CuO/Camphor-naphthalene system, the pore structure exhibited plate shape as a replica of the original structure of crystallized vehicles with hypereutectic composition.

Investigation on Relationship Between Pore Structure of Coating Layer and Ink Residual Behavior - Focused on the Effect of Pigments and Inks - (도공층의 공극성이 인쇄후 잉크의 잔류 거동에 미치는 영향 - 안료와 잉크의 효과 -)

  • 김병수;정현채;박종열
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.53-58
    • /
    • 2002
  • This paper was performed to investigate the effect of pore structure on ink residual behavior. To prepare different coating structures as substrates against inks, fine, medium and coarse calcium carbonate were used in the coating color. It is well known ink properties can affect to print qualities. After printing on the coated paper, ink layer can consider as third structure addition to paper and coating layer. To compare effect of ink properties on the surface structure and print qualities, several properties of ink were also adopted as raw material. Particle size of pigment effect on gloss evaluation of coated paper increased with calendering. It was shown that ink transfer rate increased as surface of the sample was smooth. The ink contained low viscosity resin evaluated more print gloss. Finer pigment particle size, smaller pore size and higher porosity. Pore volume of coated paper was slightly decreased with printing as the coating was prepared with the finest particle size. However, it founded that ink resin could not affect on pore volume and distribution of printed paper

Research on chloride ion diffusivity of concrete subjected to CO2 environment

  • Zhang, Shiping;Zhao, Binghua
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.219-229
    • /
    • 2012
  • Carbonation is a widespread degradation of concrete and may be coupled with more severe degradations. An experimental investigation was carried out to study the effect of carbonation on chloride ion diffusion of concrete. The characteristic of concrete after carbonation was measured, such as carbonation depth, strength and pore structure. Results indicated that carbonation depth has a good linear relation with square root of carbonate time, and carbonation can improve compressive strength, but lower flexural strength. Results about pore structure of concrete before and after carbonation have shown that carbonation could cause a redistribution of the pore sizes and increase the proportion of small pores. It also can decrease porosities, most probable pore size and average pore diameters. Chloride ion diffusion of concrete after carbonation was studied through natural diffusion method and steady state migration testing method respectively. It is supposed that the chloride ion concentration of carbonation region is higher than that of the sound region because of the separation of fixed salts, and chloride ion diffusion coefficient was increased due to carbonation action evidently.

Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.649-668
    • /
    • 2018
  • In this paper, we present a numerical model for fluid-structure interaction between structure built of porous media and acoustic fluid, which provides both pore pressure inside porous media and hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model concerns the structure built of saturated porous medium whose response is obtained with coupled discrete beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy's law, and the coupling between the solid phase and the pore fluid is introduced in the model through Biot's porous media theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical implementation of the coupling results with an additional pore pressure degree of freedom placed at each node of a Timoshenko beam finite element. The second original point of the model concerns the motion of the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite element representations of the structure response and the outside fluid motion ensures for the structure and fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in this paper show an excellent agreement between the numerically obtained results and the analytical solutions.

An Experimental Study on the Concrete Pore Structure Property (콘크리트의 공극 특성에 관한 실험적 연구)

  • Lee, Mun-Hwan;Jung, Mi-Kyung;Oh, Se-Chul;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.179-189
    • /
    • 1999
  • This study attempts to propose an evaluation considering the property of concrete pore which affects the deterioration of neutralization and the rebar resistance of concrete. Understanding pore property of concrete in using extent, for practical using of concrete manufacturing condition. basic quality property and durability estimation etc, the results of the experiment are as follows. 1) The result of analysis pore property of every specimen with the method of area ratio, in limitation of $10^{-6}{\sim}10^{-5}m$, the pore distribution ratio was maximum. It was high value as W/C was increased and the unit cement content was decreased. 2) In case of using admixture. the volume of pores was some increased as variation of mixing content. In high W/C range, it was very increased compared with plain concrete. 3) Concerned with compressive strength and volume of pores in hardened concrete, it is possible compressive strength estimation using the property of concrete pores. 4) Direct measurement of concrete pore property is difficult. the valuation of the dynamic modulus of elasticity using ultrasonic wave velocity was available. 5) Quantitatively evaluation of concrete structure durability by past result of pore distribution estimation, and it can be estimative scale of property study on the concrete materials.

  • PDF

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding;Yu Jia;Zhongling Zong;Xuan Wang;Jiasheng Zhang;Min Ni
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.627-636
    • /
    • 2023
  • The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.