• 제목/요약/키워드: pore pressure

검색결과 1,276건 처리시간 0.04초

굳지않은 모르타르의 레올로지 성질에 미치는 간극수압의 영향 (Influence of Pore Wter Pessure on Rheological Properties of Fresh Mortar)

  • 이건철;이세현;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.793-796
    • /
    • 2006
  • In this study, the rheological properties of fresh concrete of fresh mortar and concrete were investigated experimentally by shear box test. The pore water pressure in fresh mortar was measured as an influence factor of shear deformation of fresh mortar. As the result, it was clarified that the rheological properties is affected by the pore water pressure in fresh mortar and, the correcting method of shear stress in case of shear box test was obtained.

  • PDF

수평배수재를 이용한 진공압밀공법의 해석에 관한 연구 (A Study on the Analysis of Vacuum Consolidation with Horizontal Drains)

  • 김홍택;김석열;윤창진;강인규;김창겸
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.520-527
    • /
    • 2000
  • In the present study, the analytical approaches of vacuum consolidation with horizontal drains were proposed, For dissipating rapidly pore-water in hydraulic fills, vacuum consolidation method applied vacuum pressure in horizontal drains is developed. In the analytical approaches, the governing equation is based on two-dimensional finite strain consolidation theory and the boundary conditions of horizontal drains are considered in applying negative pore-water pressure occurred by vacuum pressure, Also, parametric studies to vacuum pressure and installation pattern of horizontal drains are carried out.

  • PDF

PORE WATER PRESSURE IN SAND BED UNDER OSCILLATING WATER PRESSURE

  • HoWoongShon
    • 지구물리
    • /
    • 제6권2호
    • /
    • pp.57-69
    • /
    • 2003
  • In this paper the theoretical method to analyse the pore water pressures in the bed under the oscillating water pressure is developed. In the former researches the validity of the theoretical treatment for the one-dimensional problem has been verified. However, the one-dimensional treatment is not sufficient to obtain the precise information concerning the many practical problems. From this point of view, in this study, we derive the fundamental equations for the general three-dimensional sand layer under the oscillating water pressure. The validity of this theoretical method is verified by experiments for the two-dimensional problems.

  • PDF

1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과 (Liquefaction Prevention and Damage Reduction Effect of Reinforcement by Sheet Pile Using 1-G Shaking Table Test)

  • 심성훈;윤종찬;손수원;김진만
    • 한국지진공학회논문집
    • /
    • 제24권5호
    • /
    • pp.211-217
    • /
    • 2020
  • Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.

포화된 사질토에서 등방재하시험에 의한 비배수 공극수압의 거동분석 (Analysis of the Behavior of Undrained Pore Water Pressure in Saturated Sand by Isotropic Loading Test)

  • 임성훈
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.43-52
    • /
    • 2005
  • It is known in some literatures that the B value is not equal to unity in saturated soil when effective stress is given, in which the B Value is the ratio of measured excess pore water pressure and isometric loading pressure. In this study the B value was measured on various effective stresses and on various incremental loading stresses in various grain size of specimens with saturated sand. The test results showed that the B value was affected largely by grain size of sand in specimen and the amount of effective stress. There was the semi-logarithmic relationship between B value and effective stress, and also there was the linear relationship between the gradient of the former semi-logarithmic relationship and grain size of specimen.

수평배수재용 순환골재와 쇄석의 현장시험 (Field Test of Recycled Aggregates and Crushed Stone as Horizontal Drains)

  • 김시중;이달원
    • 한국농공학회논문집
    • /
    • 제54권1호
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, field test on utilization of recycled aggregates and crushed stone as horizontal drains to use an alternative material of sand in soft ground is practiced. The settlement with time showed similarly ranged from 28.4-30.3 cm in the all horizontal materials. The excess pore water pressure of the recycled aggregates and crushed stone showed smaller than sand. The small the excess pore water pressure becomes faster the consolidation period and it can reduces the amount of residual settlement. Therefore, it was verified as having enough to an alternative materials that the field applicability is excellent. The distribution of earth pressure with time showed similarly in the all horizontal materials. The recycled aggregates and crushed stone was very applicable to practice because there is no mat resistance in the horizontal drains layer. The penetration rate in the SCP and PVD improvement sections did not show large differences as the grain size and the horizontal drainage height increases.

액상화에 의한 실트질 모레지반의 침하 산정 (Simplified Estimation of Settlement in Silty Sand Grounds Induced Liquefaction)

  • 이민호;김태훈;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.209-216
    • /
    • 2000
  • When subjected to earthquake shaking, saturated sandy soil may generate excess pore pressure. And a time may come when initial confining pressure will equal to excess pore pressure. Depending on the characteristics of the soil and the length of the drainage path, excess pore pressure was dissipated after earthquake. For this reason, it was induced settlement in grounds and fatal damage of various structures. In this study, settlement in silty sand grounds induced earthquake was evaluated using post-liquefaction constitutive equation between volumetric strain and shear strain from previous study. Using that, it was proposed that simplified estimation of settlement in silty sand grounds induced liquefaction.

  • PDF

불포화토의 전단 및 함수특성곡선 (The shear strength and soil water characteristic curve for Unsaturated Soils)

  • 임성윤;송창섭;류태진
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.361-366
    • /
    • 2005
  • Since most soils exist above the ground water table, negative pore pressure exist in unsaturated soils. Negative pore water pressure in unsaturated soil affects the soil structure and degree of saturation and it is important for accurate evaluation of unsaturate flow and behavior. This negative pore pressure is called a matric suction which causes an increased shear strength. Therefore, it is required that the effect of increase in the shear strength should be included in a geotechnical analysis. From the test result, the influence of net confining pressure and matric suction on the shear strength was analyzed and strength parameter was increased with matric suction increase and a unliner relationship was found to relate matric suction and shear strength.

  • PDF

다공성매질을 삽입한 수평채널의 열전달 및 압력강하 특성 (Heat Transfer and Pressure Drop Characteristics of a Horizontal Channel Filled with Porous Media)

  • 손영석;신지영;조영일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.244-251
    • /
    • 2009
  • Porous media have especially large surface area per volume, which contain complex fluid passage. If porous media can be applied to cool a CPU or an electronic device with large heat dissipation, it could result in heat transfer enhancement due to the enlargement of the heat transfer area and the flow disturbance. This study is aimed to identify the heat transfer and pressure drop characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed with the various heat flux, velocity and pore density conditions. Permeabilities, which is deduced from Non-Darcy flow model, become lower with increasing pore density. Nusselt number also decreases with higher pore density. High pore density with same porosity case shows higher pressure loss due to the increase of surface area per unit volume. The fiction factor decreases rapidly with increase of Reynolds number in Darcy flow region. However, it converges to a constant value of the Ergun coefficient in Non-Darcy flow region.

파랑에 의한 방파제 케이슨 침하 경향 및 원인 분석: 침하 계측자료를 중심으로 (Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data)

  • 김태형;남정만;김인석;윤성규
    • 한국지반공학회논문집
    • /
    • 제30권7호
    • /
    • pp.27-40
    • /
    • 2014
  • 지금까지의 방파제 침하와 관련된 연구는 주로 해석위주의 수치모형실험 또는 축소모형을 이용한 실내수조모형실험을 통해 이루어졌다. 현재까지 실제 방파제 구조물에서 계측된 침하를 이용한 연구는 이루어지 않았다. 본 연구에서는 실제 케이슨 방파제에서 장기간 계측된 침하 자료를 분석해 정성적인 측면에서 파동에 의한 케이슨의(하부지반 포함)침하 경향과 그 원인을 분석하였다. 분석 결과, 케이슨 침하에 파랑의 영향이 있음을 분명하게 확인할 수 있었다. 특히 태풍과 같은 고파랑 조건에서는 그 경향이 뚜렷하게 나타났다. 케이슨 침하는 파랑에 의한 해저지반에서의 진동과잉간극수압과 잔류과잉간극수압의 합으로 표현되는 과잉간극수압의 증가에 의한 지반의 액상화와 축적된 과잉간극수압의 소산에 따른 지반의 고밀도화 과정을 통해 발생된다. 케이슨 하부 지반의 과잉간극수압 거동은 전적으로 케이슨 거동에 지배된다. 고밀화과정을 경험한 지반은 동급의 또는 그 보다 작은 파랑 조건에서는 액상화 발생 가능성이 현저하게 줄어들어 결과적으로 침하 발생도 감소된다.