DOI QR코드

DOI QR Code

Pore network approach to evaluate the injection characteristics of biopolymer solution into soil

  • Jae-Eun Ryou (School of Civil Engineering, Chungbuk National University) ;
  • Beomjoo Yang (School of Civil Engineering, Chungbuk National University) ;
  • Won-Taek Hong (Department of Civil Environmental Engineering, Gachon University) ;
  • Jongwon Jung (School of Civil Engineering, Chungbuk National University)
  • Received : 2024.05.12
  • Accepted : 2024.08.21
  • Published : 2024.07.25

Abstract

Application of biopolymers to improve the mechanical properties of soils has been extensively reported. However, a comprehensive understanding of various engineering applications is necessary to enhance their effectiveness. While numerous experimental studies have investigated the use of biopolymers as injection materials, a detailed understanding of their injection behavior in soil through numerical analyses is lacking. This study aimed to address this gap by employing pore network modeling techniques to analyze the injection characteristics of biopolymer solutions in soil. A pore network was constructed from computed tomography images of Ottawa 20-30 sand. Fluid flow simulations incorporated power-law parameters and governing equations to account for the viscosity characteristics of biopolymers. Agar gum was selected as the biopolymer for analysis, and its injection characteristics were evaluated in terms of concentration and pore-size distribution. Results indicate that the viscosity properties of biopolymer solutions significantly influence the injection characteristics, particularly concerning concentration and injection pressure. Furthermore, notable trends in injection characteristics were observed based on pore size and distribution. Importantly, in contrast to previous studies, meaningful correlations were established between the viscosity of the injected fluid, injection pressure, and injection distance. Thus, this study introduces a novel methodology for integrating pore network construction and fluid flow characteristics into biopolymer injections, with potential applications in optimizing field injections such as permeation grouting.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT), (2022R1A4A3029737) (RS-2024-00353644).

References

  1. Arab, M.G., Mousa, R.A., Gabr, A.R., Azam, A.M., El-Badawy, S.M. and Hassan, A.F. (2019), "Resilient behavior of sodium alginate-treated cohesive soils for pavement applications", J. Mater. Civil Eng., 31(1), 04018361. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002565
  2. Assilzadeh, H., He, Y., Alyousef, R., Alaskar, A., Alabduljabbar, H., Mohamed, A.M., Maureira-Carsalade, N., Roco-Videla, A. and Issakhov, A. (2021), "Influence of crack on the permeability of plastic concrete", Smart Struct. Syst., Int. J., 27(5), 871-890. https://doi.org/10.12989/sss.2021.27.5.871
  3. Baranwal, A., Yadav, A. and Gupta, S. (2021), "A comparative case study on various admixtures used for soil stabilization", Soil Dyn.: Sel. Proc. 7th ICRAGEE 2020, pp. 147-157.
  4. Bouazza, A., Gates, W.P. and Ranjith, P.G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137
  5. Butt, W.A., Gupta, K. and Jha, J.N. (2016), "Strength behavior of clayey soil stabilized with saw dust ash", Int. J. Geo-Eng., 7(1), 1-9. https://doi.org/10.1186/s40703-016-0032-9
  6. Cao, S.C., Dai, S. and Jung, J. (2016), "Supercritical CO2 and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies", Int. J. Greenh. Gas Control, 44, 104-114. https://doi.org/10.1016/j.ijggc.2015.11.026
  7. Capek, M., Janacek, J. and Kubinova, L. (2006), "Methods for compensation of the light attenuation with depth of images captured by a confocal microscope", Microsc. Res. Tech., 69(8), 624-635. https://doi.org/10.1002/jemt.20330
  8. Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotech., 14, 361-375. https://doi.org/10.1007/s11440-018-0641-x
  9. Chen, P.C., Yu, C.H., Surjanto, Y.K., Peng, S.K. and Chang, K.C. (2022), "Numerical modelling of a shear-thickening fluid damper using optimal transit parameters", Smart Struct. Syst., Int. J., 30(5), 447-462. https://doi.org/10.12989/sss.2022.30.5.447
  10. Coskun, S.B. and Tokdemir, T. (2020), "Modelling of permeation grouting through soils", J. Appl. Eng. Sci., 10(1), 11-16. https://doi.org/10.2478/jaes-2020-0003
  11. Czachor, H., Doerr, S.H. and Lichner, L. (2010), "Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations", J. Hydrol., 380(1-2), 104-111. https://doi.org/10.1016/j.jhydrol.2009.10.027
  12. Dong, H. and Blunt, M.J. (2009), "Pore-network extraction from micro-computerized-tomography images", Phys. Rev. E, 80(3), 036307. https://doi.org/10.1103/PhysRevE.80.036307
  13. Doyen, P.M. (1988), "Permeability, conductivity, and pore geometry of sandstone", J. Geophys. Res.: Solid Earth, 93(B7), 7729-7740. https://doi.org/10.1029/JB093iB07p07729
  14. Eberhard, U., Seybold, H.J., Floriancic, M., Bertsch, P., Jimenez-Martinez, J., Andrade Jr, J.S. and Holzner, M. (2019), "Determination of the effective viscosity of non-Newtonian fluids flowing through porous media", Front. Phys., 7, 71. https://doi.org/10.3389/fphy.2019.00071
  15. El Mohtar, C.S., Yoon, J. and El-Khattab, M. (2015), "Experimental study on penetration of bentonite grout through granular soils", Can. Geotech. J., 52(11), 1850-1860. https://doi.org/10.1139/cgj-2014-0422
  16. Fatehi, H., Ong, D.E., Yu, J. and Chang, I. (2021), "Biopolymers as green binders for soil improvement in geotechnical applications: A review", Geosci., 11(7), 291. https://doi.org/10.3390/geosciences11070291
  17. Fei, W., Narsilio, G.A., van der Linden, J.H., Tordesillas, A., Disfani, M.M. and Santamarina, J.C. (2021), "Impact of particle shape on networks in sands", Comput. Geotech., 137, 104258. https://doi.org/10.1016/j.compgeo.2021.104258
  18. Firoozi, A.A., Guney Olgun, C., Firoozi, A.A. and Baghini, M.S. (2017), "Fundamentals of soil stabilization", Int. J. Geo-Eng., 8(1), 1-16. https://doi.org/10.1186/s40703-017-0064-9
  19. Fu, Y., Wang, X., Zhang, S. and Yang, Y. (2019), "Modelling of permeation grouting considering grout self-gravity effect: Theoretical and experimental study", Adv. Mater. Sci. Eng., 2019, 1-16. https://doi.org/10.1155/2019/7968240
  20. Gidebo, F.A., Yasuhara, H. and Kinoshita, N. (2023), "Stabilization of expansive soil with agricultural waste additives: a review", Int. J. Geo-Eng., 14(1), 14. https://doi.org/10.1186/s40703-023-00194-x
  21. Hirasaki, G.J. and Lawson, J.B. (1985), "Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries", Soc. Pet. Eng. J., 25(02), 176-190. https://doi.org/10.2118/12129-PA
  22. Hu, Q., Ewing, R.P. and Dultz, S. (2012), "Low pore connectivity in natural rock", J. Contam. Hydrol., 133, 76-83. https://doi.org/10.1016/j.jconhyd.2012.03.006
  23. Imani, M., Nejati, H.R., Goshtasbi, K. and Nazerigivi, A. (2022), "Effect of brittleness on the micromechanical damage and failure pattern of rock specimens", Smart Struct. Syst., Int. J., 29(4), 535-547. https://doi.org/10.12989/sss.2022.29.4.535
  24. Jerez Lazo, C., Lee, N., Tripathi, P., Joykutty, L., Jayachandran, K. and Lee, S.J. (2024), "A fungus-based soil improvement using Rhizopus oryzae inoculum", Int. J. Geo-Eng., 15(1), 18. https://doi.org/10.1186/s40703-024-00218-0
  25. Jerez Lazo, C., Lee, N., Tripathi, P., Joykutty, L., Jayachandran, K. and Lee, S.J. (2024), "A fungus-based soil improvement using Rhizopus oryzae inoculum", Int. J. Geo-Eng., 15(1), 18. https://doi.org/10.1186/s40703-024-00218-0
  26. Jithin, M., Kumar, N., De, A. and Das, M.K. (2018), "Pore-scale simulation of shear thinning fluid flow using lattice boltzmann method", Transp. Porous Media, 121, 753-782. https://doi.org/10.1007/s11242-017-0984-z
  27. Kim, R.E., Koh, E. and Jin, S.S. (2022), "Physical interpretation of concrete crack images from feature estimation and classification", Smart Struct. Syst., Int. J., 30(4), 385-395. https://doi.org/10.12989/sss.2022.30.4.385
  28. Lee, M., Im, J., Chang, I. and Cho, G.C. (2021), "Evaluation of injection capabilities of a biopolymer-based grout material", Geomech. Eng., Int. J., 25(1), 31-40. https://doi.org/10.12989/gae.2021.25.1.031
  29. Lee, J., Kim, K., Kim, H. and Sohn, H. (2024), "Coating defect classification method for steel structures with vision-thermography imaging and zero-shot learning", Smart Struct. Syst., Int. J., 33(1), 55. https://doi.org/10.12989/sss.2024.33.1.055
  30. Lenk, R.S. (1978), "The Hagen-Poiseuille equation and the Rabinowitsch correction. The pressure drop in tapered channels", Polym. Rheol., 75-85. https://doi.org/10.1007/978-94-010-9666-97
  31. Li, Y., Alves, R., Vanapalli, S., Gitirana Jr, G. (2024), "Models for considering the thermo-hydro-mechanical-chemo effects on soil-water characteristic curves", Geosci., 14(2), 38. https://doi.org/10.3390/geosciences14020038
  32. Mekonnen, E., Amdie, Y., Etefa, H., Tefera, N. and Tafesse, M. (2022), "Stabilization of expansive black cotton soil using bioenzymes produced by ureolytic bacteria", Int. J. Geo-Eng., 13(1), 10. https://doi.org/10.1186/s40703-022-00175-6
  33. Nelson, P.H. (2009), "Pore-throat sizes in sandstones, tight sandstones, and shales", AAPG Bull., 93(3), 329-340. https://doi.org/10.1306/10240808059
  34. Pushpakumara, B.H.J. and Mendis, W.S.W. (2022), "Suitability of rice husk ash (RHA) with lime as a soil stabilizer in geotechnical applications", Int. J. Geo-Eng., 13(1), 4. https://doi.org/10.1186/s40703-021-00169-w
  35. Ryou, J.E. and Jung, J. (2022), "Penetration behavior of biopolymer aqueous solutions considering rheological properties", Geomech. Eng., Int. J., 29(3), 259-267. https://doi.org/10.12989/gae.2022.29.3.259
  36. Ryou, J.E. and Jung, J. (2023), "Characteristics of thermo-gelation biopolymer solution injection into porous media", Constr. Build. Mater., 384, 131451. https://doi.org/10.1016/j.conbuildmat.2023.131451
  37. Seo, S., Lee, M., Im, J., Kwon, Y.M., Chung, M.K., Cho, G.C. and Chang, I. (2021), "Site application of biopolymer-based soil treatment (BPST) for slope surface protection: In-situ wet-spraying method and strengthening effect verification", Constr. Build. Mater., 307, 124983. https://doi.org/10.1016/j.conbuildmat.2021.124983
  38. Sochi, T. (2010), "Flow of non-Newtonian fluids in porous media", J. Polym. Sci. Part B: Polym. Phys., 48(23), 2437-2767. https://doi.org/10.1002/polb.22144
  39. Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Sci. Rep., 10(1), 267. https://doi.org/10.1038/s41598-019-57135-x
  40. Toufigh, V. and Ghassemi, P. (2020), "Control and stabilization of fugitive dust: Using eco-friendly and sustainable materials", Int. J. Geomech., 20(9), 04020140. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001762
  41. van Genuchten, M.T. and Jury, W.A. (1987), "Progress in unsaturated flow and transport modeling", Rev. Geophys., 25(2), 135-140. https://doi.org/10.1029/RG025i002p00135
  42. Wang, X., Cheng, H., Yao, Z., Rong, C., Huang, X. and Liu, X. (2022), "Theoretical research on sand penetration grouting based on cylindrical diffusion model of tortuous tubes", Water, 14(7), 1028. https://doi.org/10.3390/w14071028
  43. Wanniarachchi, W.A.M., Ranjith, P.G. and Perera, M.S.A. (2017), "Shale gas fracturing using foam-based fracturing fluid: a review", Environ. Earth Sci., 76, 1-15. https://doi.org/10.1007/s12665-017-6399-x
  44. Xiong, Q., Baychev, T.G. and Jivkov, A.P. (2016), "Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport", J. Contam. Hydrol., 192, 101-117. https://doi.org/10.1016/j.jconhyd.2016.07.002
  45. Xu, K., Wei, W., Chen, Y., Tian, H., Xu, S. and Cai, J. (2022), "A pore network approach to study throat size effect on the permeability of reconstructed porous media", Water, 14(1), 77. https://doi.org/10.3390/w14010077
  46. Zivari, A., Siavoshnia, M. and Rezaei, H. (2023), "Effect of lime-rice husk ash on geotechnical properties of loess soil in Golestan province, Iran", Int. J. Geo-Eng., 14(1), 20. https://doi.org/10.1186/s40703-023-00199-6