Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT), (2022R1A4A3029737) (RS-2024-00353644).
References
- Arab, M.G., Mousa, R.A., Gabr, A.R., Azam, A.M., El-Badawy, S.M. and Hassan, A.F. (2019), "Resilient behavior of sodium alginate-treated cohesive soils for pavement applications", J. Mater. Civil Eng., 31(1), 04018361. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002565
- Assilzadeh, H., He, Y., Alyousef, R., Alaskar, A., Alabduljabbar, H., Mohamed, A.M., Maureira-Carsalade, N., Roco-Videla, A. and Issakhov, A. (2021), "Influence of crack on the permeability of plastic concrete", Smart Struct. Syst., Int. J., 27(5), 871-890. https://doi.org/10.12989/sss.2021.27.5.871
- Baranwal, A., Yadav, A. and Gupta, S. (2021), "A comparative case study on various admixtures used for soil stabilization", Soil Dyn.: Sel. Proc. 7th ICRAGEE 2020, pp. 147-157.
- Bouazza, A., Gates, W.P. and Ranjith, P.G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137
- Butt, W.A., Gupta, K. and Jha, J.N. (2016), "Strength behavior of clayey soil stabilized with saw dust ash", Int. J. Geo-Eng., 7(1), 1-9. https://doi.org/10.1186/s40703-016-0032-9
- Cao, S.C., Dai, S. and Jung, J. (2016), "Supercritical CO2 and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies", Int. J. Greenh. Gas Control, 44, 104-114. https://doi.org/10.1016/j.ijggc.2015.11.026
- Capek, M., Janacek, J. and Kubinova, L. (2006), "Methods for compensation of the light attenuation with depth of images captured by a confocal microscope", Microsc. Res. Tech., 69(8), 624-635. https://doi.org/10.1002/jemt.20330
- Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotech., 14, 361-375. https://doi.org/10.1007/s11440-018-0641-x
- Chen, P.C., Yu, C.H., Surjanto, Y.K., Peng, S.K. and Chang, K.C. (2022), "Numerical modelling of a shear-thickening fluid damper using optimal transit parameters", Smart Struct. Syst., Int. J., 30(5), 447-462. https://doi.org/10.12989/sss.2022.30.5.447
- Coskun, S.B. and Tokdemir, T. (2020), "Modelling of permeation grouting through soils", J. Appl. Eng. Sci., 10(1), 11-16. https://doi.org/10.2478/jaes-2020-0003
- Czachor, H., Doerr, S.H. and Lichner, L. (2010), "Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations", J. Hydrol., 380(1-2), 104-111. https://doi.org/10.1016/j.jhydrol.2009.10.027
- Dong, H. and Blunt, M.J. (2009), "Pore-network extraction from micro-computerized-tomography images", Phys. Rev. E, 80(3), 036307. https://doi.org/10.1103/PhysRevE.80.036307
- Doyen, P.M. (1988), "Permeability, conductivity, and pore geometry of sandstone", J. Geophys. Res.: Solid Earth, 93(B7), 7729-7740. https://doi.org/10.1029/JB093iB07p07729
- Eberhard, U., Seybold, H.J., Floriancic, M., Bertsch, P., Jimenez-Martinez, J., Andrade Jr, J.S. and Holzner, M. (2019), "Determination of the effective viscosity of non-Newtonian fluids flowing through porous media", Front. Phys., 7, 71. https://doi.org/10.3389/fphy.2019.00071
- El Mohtar, C.S., Yoon, J. and El-Khattab, M. (2015), "Experimental study on penetration of bentonite grout through granular soils", Can. Geotech. J., 52(11), 1850-1860. https://doi.org/10.1139/cgj-2014-0422
- Fatehi, H., Ong, D.E., Yu, J. and Chang, I. (2021), "Biopolymers as green binders for soil improvement in geotechnical applications: A review", Geosci., 11(7), 291. https://doi.org/10.3390/geosciences11070291
- Fei, W., Narsilio, G.A., van der Linden, J.H., Tordesillas, A., Disfani, M.M. and Santamarina, J.C. (2021), "Impact of particle shape on networks in sands", Comput. Geotech., 137, 104258. https://doi.org/10.1016/j.compgeo.2021.104258
- Firoozi, A.A., Guney Olgun, C., Firoozi, A.A. and Baghini, M.S. (2017), "Fundamentals of soil stabilization", Int. J. Geo-Eng., 8(1), 1-16. https://doi.org/10.1186/s40703-017-0064-9
- Fu, Y., Wang, X., Zhang, S. and Yang, Y. (2019), "Modelling of permeation grouting considering grout self-gravity effect: Theoretical and experimental study", Adv. Mater. Sci. Eng., 2019, 1-16. https://doi.org/10.1155/2019/7968240
- Gidebo, F.A., Yasuhara, H. and Kinoshita, N. (2023), "Stabilization of expansive soil with agricultural waste additives: a review", Int. J. Geo-Eng., 14(1), 14. https://doi.org/10.1186/s40703-023-00194-x
- Hirasaki, G.J. and Lawson, J.B. (1985), "Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries", Soc. Pet. Eng. J., 25(02), 176-190. https://doi.org/10.2118/12129-PA
- Hu, Q., Ewing, R.P. and Dultz, S. (2012), "Low pore connectivity in natural rock", J. Contam. Hydrol., 133, 76-83. https://doi.org/10.1016/j.jconhyd.2012.03.006
- Imani, M., Nejati, H.R., Goshtasbi, K. and Nazerigivi, A. (2022), "Effect of brittleness on the micromechanical damage and failure pattern of rock specimens", Smart Struct. Syst., Int. J., 29(4), 535-547. https://doi.org/10.12989/sss.2022.29.4.535
- Jerez Lazo, C., Lee, N., Tripathi, P., Joykutty, L., Jayachandran, K. and Lee, S.J. (2024), "A fungus-based soil improvement using Rhizopus oryzae inoculum", Int. J. Geo-Eng., 15(1), 18. https://doi.org/10.1186/s40703-024-00218-0
- Jerez Lazo, C., Lee, N., Tripathi, P., Joykutty, L., Jayachandran, K. and Lee, S.J. (2024), "A fungus-based soil improvement using Rhizopus oryzae inoculum", Int. J. Geo-Eng., 15(1), 18. https://doi.org/10.1186/s40703-024-00218-0
- Jithin, M., Kumar, N., De, A. and Das, M.K. (2018), "Pore-scale simulation of shear thinning fluid flow using lattice boltzmann method", Transp. Porous Media, 121, 753-782. https://doi.org/10.1007/s11242-017-0984-z
- Kim, R.E., Koh, E. and Jin, S.S. (2022), "Physical interpretation of concrete crack images from feature estimation and classification", Smart Struct. Syst., Int. J., 30(4), 385-395. https://doi.org/10.12989/sss.2022.30.4.385
- Lee, M., Im, J., Chang, I. and Cho, G.C. (2021), "Evaluation of injection capabilities of a biopolymer-based grout material", Geomech. Eng., Int. J., 25(1), 31-40. https://doi.org/10.12989/gae.2021.25.1.031
- Lee, J., Kim, K., Kim, H. and Sohn, H. (2024), "Coating defect classification method for steel structures with vision-thermography imaging and zero-shot learning", Smart Struct. Syst., Int. J., 33(1), 55. https://doi.org/10.12989/sss.2024.33.1.055
- Lenk, R.S. (1978), "The Hagen-Poiseuille equation and the Rabinowitsch correction. The pressure drop in tapered channels", Polym. Rheol., 75-85. https://doi.org/10.1007/978-94-010-9666-97
- Li, Y., Alves, R., Vanapalli, S., Gitirana Jr, G. (2024), "Models for considering the thermo-hydro-mechanical-chemo effects on soil-water characteristic curves", Geosci., 14(2), 38. https://doi.org/10.3390/geosciences14020038
- Mekonnen, E., Amdie, Y., Etefa, H., Tefera, N. and Tafesse, M. (2022), "Stabilization of expansive black cotton soil using bioenzymes produced by ureolytic bacteria", Int. J. Geo-Eng., 13(1), 10. https://doi.org/10.1186/s40703-022-00175-6
- Nelson, P.H. (2009), "Pore-throat sizes in sandstones, tight sandstones, and shales", AAPG Bull., 93(3), 329-340. https://doi.org/10.1306/10240808059
- Pushpakumara, B.H.J. and Mendis, W.S.W. (2022), "Suitability of rice husk ash (RHA) with lime as a soil stabilizer in geotechnical applications", Int. J. Geo-Eng., 13(1), 4. https://doi.org/10.1186/s40703-021-00169-w
- Ryou, J.E. and Jung, J. (2022), "Penetration behavior of biopolymer aqueous solutions considering rheological properties", Geomech. Eng., Int. J., 29(3), 259-267. https://doi.org/10.12989/gae.2022.29.3.259
- Ryou, J.E. and Jung, J. (2023), "Characteristics of thermo-gelation biopolymer solution injection into porous media", Constr. Build. Mater., 384, 131451. https://doi.org/10.1016/j.conbuildmat.2023.131451
- Seo, S., Lee, M., Im, J., Kwon, Y.M., Chung, M.K., Cho, G.C. and Chang, I. (2021), "Site application of biopolymer-based soil treatment (BPST) for slope surface protection: In-situ wet-spraying method and strengthening effect verification", Constr. Build. Mater., 307, 124983. https://doi.org/10.1016/j.conbuildmat.2021.124983
- Sochi, T. (2010), "Flow of non-Newtonian fluids in porous media", J. Polym. Sci. Part B: Polym. Phys., 48(23), 2437-2767. https://doi.org/10.1002/polb.22144
- Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Sci. Rep., 10(1), 267. https://doi.org/10.1038/s41598-019-57135-x
- Toufigh, V. and Ghassemi, P. (2020), "Control and stabilization of fugitive dust: Using eco-friendly and sustainable materials", Int. J. Geomech., 20(9), 04020140. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001762
- van Genuchten, M.T. and Jury, W.A. (1987), "Progress in unsaturated flow and transport modeling", Rev. Geophys., 25(2), 135-140. https://doi.org/10.1029/RG025i002p00135
- Wang, X., Cheng, H., Yao, Z., Rong, C., Huang, X. and Liu, X. (2022), "Theoretical research on sand penetration grouting based on cylindrical diffusion model of tortuous tubes", Water, 14(7), 1028. https://doi.org/10.3390/w14071028
- Wanniarachchi, W.A.M., Ranjith, P.G. and Perera, M.S.A. (2017), "Shale gas fracturing using foam-based fracturing fluid: a review", Environ. Earth Sci., 76, 1-15. https://doi.org/10.1007/s12665-017-6399-x
- Xiong, Q., Baychev, T.G. and Jivkov, A.P. (2016), "Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport", J. Contam. Hydrol., 192, 101-117. https://doi.org/10.1016/j.jconhyd.2016.07.002
- Xu, K., Wei, W., Chen, Y., Tian, H., Xu, S. and Cai, J. (2022), "A pore network approach to study throat size effect on the permeability of reconstructed porous media", Water, 14(1), 77. https://doi.org/10.3390/w14010077
- Zivari, A., Siavoshnia, M. and Rezaei, H. (2023), "Effect of lime-rice husk ash on geotechnical properties of loess soil in Golestan province, Iran", Int. J. Geo-Eng., 14(1), 20. https://doi.org/10.1186/s40703-023-00199-6