• Title/Summary/Keyword: pore depth

Search Result 249, Processing Time 0.024 seconds

Effects of Forest Fire on the Water Storage Characteristics of Forest Land (산불이 임지(林地)의 수저류(水貯留) 특성(特性)에 미치는 영향(影響))

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.66-75
    • /
    • 1996
  • This study was carried out to examine the forest fire effect on water storage characteristics in the forests. Water storage capacity of the burned area was analyzed by several major factors, such as soil pore, maximum water content, effective water storage, and percolation rate. The results obtained from the analysis of major factors are as follows; The deeper soil depth, the less total pore, coarse pore, effective water storage, and percolation rate. However, fine pore increased slightly in both burned area and control plot. As compared with control plot, burned area showed lower percolation rate, coarse pore, and effective water storage, but higher values of fine pore. Directly after forest fire, the soil pore is little affected. But as the time passes, top soil structure changes and soil pore also is affected even in a deep soil. Estimated effective water storage was lower at top soil of Namcheon and at deep soil of Namha in all the burned areas, but slowly decreased in deep soil compared to control plots. Therefore it was concluded that forest water storage capacity was greatly affected by the forest fire.

  • PDF

An Experimental Study on the Variation of Pore Water Pressures in the Seabed Subjected to Waves (파랑하중에 의한 해저지반의 공극수압 변화에 대한 연구)

  • 장병욱;강준영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.85-94
    • /
    • 1996
  • For the geotechnical analysis in the construction and Deign of the coastal structures, one of the most important factors is the existence of waves. The dynamic behavior and deformation of the seabed subjected to wave load must be considered. It is expected that the soil behavior in the seabed subjected to cyclic wave load is much different from that on the ground subjected to dynamic forces such as earthquake. The purposes of this study are as follows ; Firstly, to provide a testing method to generate wave loads in the laboratory and measuring oscillatory pore water pressures in the unsaturated marine silty sand specimen, Secondly, to analyze the mechanism of wave induced pore water pressures and liquefaction potentials under the conditions in the testing. It is shown that the test set-up manufactured especially for the test is good to generate oscillatory wave pressures to the specimen with sine wave type. From the results of this study, it is understood that the pore water pressure due to induced waves is not accumulated as the wave number increases but is periodically varied with wave passage on still water surface. The magnitude of pore water pressures measured tends to be diminished radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

Effects of Soil Compaction and Artificial Pore Space on the Shoot Density of Tall Fescue (Tall fescue의 밀도변화에 미치는 토양경화와 공극률의 영향)

  • 이주삼;윤용재;김성규;윤익석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.2
    • /
    • pp.109-112
    • /
    • 1987
  • This experiment was to study the effects of soil compaction and artificial pore space on the shoot density of tall fescue (Festuca arundinacea Schreb.). Tall fescue subjected to compaction treatments with control, 10, 20 and 40 kg power roller, used for two times bi-weekly during six months. Artificial pore space treatments were control, 13.5, 37.5 and 84.5% at 0-lOcm depth, respectively. 1. Soil compaction increased soil hardness and soil bulk density.2. Compaction level of lOkg (soil hardness 2.5kg/$cm^3$) showed the highest shoot density than that of other treatments. 3. Artificial pore space was positive significant correlated (p<0.01) with shoot density. 4. When over the 37.5% of total pore space could be mainternance for high shoot density after the soil compacted.

  • PDF

An Analysis of Pore Network of Drilling Core from Pohang Basin for Geological Storage of CO2 (이산화탄소 지중저장을 위한 포항분지 시추코어의 공극구조 분석)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • In geological storage of $CO_2$, the behavior of $CO_2$ is influenced by pore network of rock. In this study, the drilling cores from Pohang Basin were analyzed quantitatively using three-dimensional images acquired by X-ray micro computed tomography. The porosities of sandstone specimens around 740 m-depth (T1), 780 m-depth (T2) and 810 m-depth (T3) which were target strata were 25.22%, 23.97%, 6.28%, respectively. Equivalent diameter, volume, area, local thickness of pores inside the sandstone specimens were analyzed. As a result, the microstructural properties of T1 and T2 specimens were more suitable for geological storage of $CO_2$ than those of T3 specimens. The result of the study can be used as input data of the site for decision of injection condition, flow simulation and so on.

Evaluation of Similitude Laws for Dissipation Velocity of Excess Pore Pressure after Liquefaction using Impulse Load Tests (충격하중시험을 이용한 액상화 후 과잉간극수압 소산속도의 상사비 연구)

  • Kim, Dong-Hwi;Ha, Ik-Soo;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.714-721
    • /
    • 2004
  • The purpose of this study is to find out the similitude laws for dissipation velocity of excess pore pressure after liquefaction according to magnitude of input accelerations and height of model soils from the results of impulse load tests. In impulse load tests, model soils were constructed to the height of 25cm, 50cm, and 100cm in acrylic tubes whose inside diameters were 19cm and 38cm respectively, and impulse loads were applied at the bottom of each model soil to liquefy the entire model soil. Excess pore pressure distribution by depth and settlement of soil surface were measured in each test. Dissipation curves of excess pore pressure measured in each tests were simulated by solidification theory, and dissipation velocities of excess pore pressure were determined from the slope of simulated dissipation curves. From the results of impulse load tests, dissipation velocity of excess pore pressure was not affected by magnitude of input acceleration, and from this fact, dissipation process was proved to be different from dynamic phenomenon. However, dissipation velocity of excess pore pressure increased as height of model soil increased and showed little difference as diameter of model soil increased. Therefore, the similitude law for dissipation velocity could be expressed by the similitude law for model height to 0.2 without regard to the diameter of model soil.

  • PDF

Wave-Induced Response of Unsaturated and Multi-layered Seabed; A Semi-analytical Method (파랑으로 인한 불포화된 다층 해저지반의 거동;준해석적 방법)

  • ;Rahman, M. S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.45-55
    • /
    • 1999
  • Wave-induced response, liquefaction and stability of unsaturated seabed are studied. The unsaturated seabed is modeled as a fluid-filled polo-elastic medium. The coupled process of fluid flow and the deformation of soil skeleton is formulated in the framework of Biot's theory. The resulting governing equations are solved using a semi-analytical method to evaluate the stresses and pore water pressure of unsaturated and multi-layered seabed. The semi-analytical method can be applied to calculate a pore pressure and the stresses of in anisotropic inhomogeneous seabed. The results indicate that the degree of saturation influences mostly on the magnitudes of a pore pressure and the stresses of unsaturated and multi-layed seabed. Based on the pore pressure and stresses in seabed, the analysis on the possibilities of liquefaction and shear failure was performed. The results show that the maximum depth of shear failure occurrence is deeper than the maximum liquefaction depth.

  • PDF

Microporous Polystyrene Membranes Produced via Thermally Induced Phase Separation (열적으로 유도된 상 분리에 의해 제조된 폴리스티렌 미세 다공성 막)

  • Song, Seung-Won;Torkelson, John M.
    • Membrane Journal
    • /
    • v.5 no.3
    • /
    • pp.119-128
    • /
    • 1995
  • The effects of coarsening on microstructure formation in polystyrene-cyclohexane solutions and membranes made from them were studied by scanning electron miccoscopy(SEM). Thermal analysis of the polymer solutions was carried out with a differential scanning calorimeter and the binodal curve was determined from the onset temperature of the heat of demixing peak. Using thermally induced phase separation(TIPS) and a freeze drying technique, it was demonstrated that polymer membrane microstructure can be changed significantly by controlling coarsening time and quench route. For systems undergoing phase separation by spinodal decomposition, resulting in a well interconnecmd, microporous structure with nearly uniform pore sizes, it was found that extending the phase separation time prior m freezing and solvent removal can result in a significant increase in pore or cell size which is highly dependent on both quench depth and coarsening time. Also this study has revealed the important role of polymer concentration in dictating the material continuity of the membranes.

  • PDF

Analysis of Isochrone Effect of Clayey Soils using Numerical Analysis (수치해석을 이용한 점성토 지반의 아이소크론 영향 분석)

  • Lee, Yun-Sic;Lee, Jong-Ho;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.84-97
    • /
    • 2019
  • Purpose: The consolidation settlement of soft ground is dependent on the distribution of pore water pressure which is also affected by hydraulic conductivities (boundary condition) of layers, thickness of clayey soil layer and surcharge. Results: However, the current consolidation analyses are mostly based on Terzaghi's consolidation theory that assumes the initial pore water pressure ratio with depth to be constant. In this study, numerical analysis are carried out to investigate the variation of pore water pressure dissipation with depth and thickness of clayey soil layer, time, surcharge as well as drainage conditions. Conclusion: Comparative study with Terzaghi's consolidation theory is also conducted. The result shows that Terzaghi's consolidation theory should be used with caution unless it is ideally corresponded to the isochrone.

Analysis on the Restoration of Visiting Roads of Stream of Chilsun in Jirisan National Park (지리산국립공원내 칠선계곡 탐방로의 회복에 관한 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • To investigate the restoration procedure on soil physical properties at the surface of visiting road affected by rest-year system. This study was carried out at visiting roads of stream of Chilsun in Jirisan. Mean soil strength in 20cm of soil depth was lower in the Rest-Year System areas (1.5-1.9 times in Site 2, 1.1-7.5 times in Site 3) than in the control (Site 1). Soil strength was recovered by the Rest-Year System in the national park. Mesopore rate (pF 2.7) in 0-15 cm of soil depth was higher in the Rest-Year System areas (1.2 times) than in the control. This indicates that mesopore rate is rapidly restoring in the Rest-Year System areas. Pore space rate in 0-7.5 cm of soil depth was higher in the Rest-Year System areas (23.2% in Site 2, 23.6% in Site 3) than in the control (22.4% in Site 1). Pore space rate in 7.5-15 cm of soil depth was also higher in the Rest-Year System areas (22.9% in Site 2 and Site 3) than in the control (18.9% in Site 1). Soil pore space was remediable by the Rest-Year System. Bulk density in 0-7.5 cm of soil depth was lower in the Rest-Year System areas (1.674g/$cm^3$ in Site 2, 1.668g/$cm^3$ in Site 3) than in the control (1.723g/$cm^3$ in Site 1). Bulk density in 7.5-15 cm of soil depth was lower in the Rest-Year System areas (1.785g/$cm^3$ in Site 2 and 1.721g/$cm^3$ in Site 3) than in the control (1.721g/$cm^3$ in Site 1). Soil bulk density was decreased in the Rest-Year System areas of the national park. Amount of soil erosion was lower in the Rest-Year System areas ($0.017m^3$/km/yr in site 2, $0.023m^3$/km/yr in site 3) than in the control ($0.054m^3$/km/yr in site 1).

Evaluation of Apparent Chloride Diffusivity of Types of Concretes (콘크리트 종류별 겉보기 염소이온 확산특성 평가)

  • 문한영;김홍삼;최두선;이승훈;손유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.74-77
    • /
    • 2003
  • This paper investigated the apparent chloride diffusivity of various concretes. Ten mixtures of concrete were initially prepared and tested to estimate diffusion property. The penetration depth and concentration of chloride ion were examined at the same water-binder ration. The binders were composed of normal portland cement, fly ash, ground granulated blast-furnace slag, and silica fume. From the results, it was concluded that using the mineral admixtures had a filling effect on the pore structure of cements matrix due to those pozzoanic reaction with the hydrates of cement, which increases the tortuosity of pore and makes large pore finer. And diffusivity of chloride is following: NPC100 > F10N90 > F30N70 > F20N80 > F20S05 > G30N70 > F10S05 > G30S05 > G30F15 > G50N50.

  • PDF