• Title/Summary/Keyword: pore

Search Result 5,569, Processing Time 0.033 seconds

Estimating Hydraulic Properties of Soil from Constriction-pore Size Distribution (수축공극크기분포를 이용한 지반의 수리학적 물성치 산정)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.27-34
    • /
    • 2022
  • Since water flow in the ground depends on the pore structure composed of soil grains, equations to predict the hydraulic properties based on the grain size have low accuracy. This paper presents a methodology to compute constriction-pore size distribution by Silveria's method and estimate saturated and unsaturated hydraulic properties of soils. Well-graded soil shows a uni-modal pore size distribution, and poor-graded soil does a bimodal distribution. Among theoretical models for saturated hydraulic conductivity using pore size distribution, Marshall model is well-matched with experimental results. Model formulas for soil-water characteristic curves and unsaturated hydraulic conductivity using the pore size distribution are proposed for hydraulic analysis of unsaturated soil. Continuous research is needed to select a model suitable to estimate hydraulic properties by applying the developed model formulas to various soils.

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Basic Analysis on Fractal Characteristics of Cement Paste Incorporating Ground Granulated Blast Furnace Slag (고로슬래그 미분말 혼입 시멘트 페이스트의 프랙탈 특성에 관한 기초적 분석)

  • Kim, Jiyoung;Choi, Young Cheol;Choi, Seongcheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.101-107
    • /
    • 2017
  • This study aimed to conduct the basic analysis on the fractal characteristics of cementitious materials. The pore structure of cement paste incorporating ground granulated blast furnace slag (GGBFS) was measured using mercury intrusion porosimetry (MIP) and the fractal characteristics were investigated using different models. Because the pore structure of GGBFS-blended cement paste is an irregular system in the various range from nanometer to millimeter, the characteristics of pore region in the different scale may not be adequately described when the fractal dimension was calculated over the whole scale range. While Zhang and Li model enabled analyzing the fraction dimension of pore structure over the three divided scale ranges of micro, small capillary and macro regions, Ji el al. model refined analysis on the fractal characteristics of micro pore region consisting of micro I region corresponding to gel pores and micro II region corresponding to small capillary pores. As the pore size decreased, both models suggested that the pore surface of micro region became more irregular than macro region and the complexity of pores increased.

Determination of the Period of the Formation and Size of Sieve Element Area and Sieve Pore (Streptanthus tortus 조직배양 세포에서 사공의 형성시기와 사공 영역과 사공의 크기 결정)

  • Cho, Bong-Heuy
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.41-44
    • /
    • 2002
  • During the phloem development from parenchyma cells in a suspension culture of Streptanthus induced sucrose carrier and glucose carrier disappeared. Sieve element area and sieve pore induced suspension culture of Streptanthus were formed almost at the last period of the synthesis of sieve endoplasmic reticulum (SER) and p-protein. The new synthesized cell wall begann to digeste only after the new cell wall was surrounded by SER. The digested region of the cell wall and the formed region of sieve pore were regular comparatively. The completed sieve pore was an oval form, and the outer portion of sieve pore varied, ca 1.2 ${\mu}{\textrm}{m}$~1.6 ${\mu}{\textrm}{m}$ in longitudinal, 0.8 ${\mu}{\textrm}{m}$~1.3 ${\mu}{\textrm}{m}$ in tangential, and the inner size of sieve pore was irregular form of a star-like shape. The number of sieve pore between sieve cells was ca 2~7 per ${\mu}{\textrm}{m}$$^2$ and the sieve pore wall with callose was 0.05 ${\mu}{\textrm}{m}$~0.07 ${\mu}{\textrm}{m}$ in thickness. The energy for the formation of sieve element area and sieve pore might be supplied by mitochondria near the new cell wall and the role of SER remains to be illucidated.

Surface Milling for the Study of Pore Structure in Shale Reservoirs (셰일 저류층 내 공극 구조 연구를 위한 표면 밀링)

  • Park, Sun Young;Choi, Jiyoung;Lee, Hyun Suk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2020
  • Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.

A Study on the Diffusion of Ions in Hardened Blended Cement (혼합시멘트 경화체에서의 이온확산에 관한 연구)

  • 방완근;이승헌;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.260-265
    • /
    • 1999
  • 보통 포틀랜드 시멘트와 플라이애쉬, 슬래그를 혼합한 혼합시멘트 경화체를 이용하여 이온 확산에 미치는 혼합재의 영향과 양이온 공존시 염소이온의 확산에 대하여 고찰하였다. 겉보기 이온확산계수가 보통 포틀랜드의 시멘트보다 플라이애쉬와 슬래그를 혼합한 시멘트 경화체가 약 10-3배로 매우 낮은 값을 나타내었다. 이것은 포졸란 반응에 의해 많은 CSH 수화물이 capillary pore에 형성되어 macro pore가 감소되고 micro pore가 증가되어 이온 확산에 대한 저항이 커졌기 때문이다. 또한, Mg2+이온 공존시에 염소이온의 확산은 증가되었다.

  • PDF

TEM Study of Micropores Developed on Pitch-based Carbon Fiber

  • Ryu, Seung-Kon;Lu, Ji Gui
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.114-118
    • /
    • 2006
  • Isotropic pitch-based carbon fiber has been activated by steam diluted in nitrogen in order to characterize the microporosity. Especially, 40 wt% burn-off ACFs were prepared from different conditions to compare the pore structure and size. The ACFs were thinly sliced to investigate the inside pores by TEM and image analyzer. As expected, the adsorption characteristics of these ACFs were quite different from one another because of different pore structure and size. Most pores are not slit-shaped but rather round. Small round micropores become broad and irregular as increasing the activation time and temperature.

  • PDF

Characterization of the Microporosity of Activated Carbon Fiber (활성탄소섬유의 미세기공 특성화)

  • 진항교;이정민;유승곤
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.491-500
    • /
    • 1993
  • The adsorption of nitrogen (77K) and carbon dioxide(273K) was performed on a series of activated carbon fiber. Theadsorption iotherm of nitrogen was typical type 1 and that of carbon dioxide was convex. As the specific surface area increases, there are linear increases in BET constant C mean pore diameter, the width of pore size distribution, wide micropore volume, total micropore volume, total pore volume and external surface area, however, narrow micropore volume was nealy constant . The total micorpore volume fraction in total pore volume is above 97%.

  • PDF

Effect of Adsorbent Pore Characteristics on the Removal Efficiency of Smoke Components. (흡착제 세공 특성이 담배연기성분 제거에 미치는 영향)

  • 이영택;김영호;신창호;임광수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • The adsorption efficiency of some adsorbents for the organic solvents and gas phase of smoke was investigated. 1. Specific surface area of activated carbon increased to 1900 mfg with increased activation time. 2. Adsorption efficiency of benzene and acetone increased with increasing total surface area. Adsorption capacity for gas phase such as hydrogen cyanide, aldehyde was proportional to the micro pore surface area under 20A. 3. The removal efficiency of particulate matter of smoke was higher with the adsorbents of relatively higher pore size compared to that of micro pore.

  • PDF

Behavior of Excessive Pore Water Pressure with Embankment on Soft Ground (연약지반의 성토에 따른 과잉간극수압의 거동)

  • 김지훈;강예묵;이달원;임성훈
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.588-593
    • /
    • 1999
  • This study were performed to investigated the behavior of excessive pore water pressure with embankment of soft clay. The dissipation behavior of excessive pore water pressure in the improved and non-improved area was used to compare and alyze with lateral displacement , and to investigated the applicability of the methods for stability evaluatio of soft clay. The behavior of excess pore water pressure could be used to the fundamental data for stability evaluation, and the evaluation of the stability of embankment was recommended to use the indlination of curve rather than critical line.

  • PDF