• Title/Summary/Keyword: porcine skin

Search Result 85, Processing Time 0.031 seconds

Comparison of Microbiological Safety of Porcine Grafts on Gamma Irradiation for Use of Xenografts (돼지 유래 생체 조직의 이식재 활용을 위한 방사선 조사 미생물 제어 평가)

  • Jo, Eu-Ri;Kim, Jeongsoo;Choi, Jong-il;Kim, Jae-Hun;Sung, Nak-Yun;Song, Beom-Seok;Kim, JaeKyung;Park, Jong-Heum;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.279-283
    • /
    • 2011
  • This study was compared microbiological safety with gamma-irradiated porcine tendon and skin, as materials for the development of xenografts to regenerate damaged tissues and protect secondary contamination. The porcine tendon and skin were gamma-irradiated after inoculation of bacteria and virus to evaluate irradiation sensitivity of microorganisms. The result showed that the porcine tendon and skin were not different on the sensitivity of microorganisms by gamma irradiation. Bacteria inoculated in the porcine tendon and skin were confirmed that E. coli was the $D_{10}$ values of $0.32{\pm}0.082$ and $0.25{\pm}0.1kGy$ on tendon and skin, and B. subtilis was $4.00{\pm}0.312$ and $3.88{\pm}0.3kGy$ on gamma irradiation, respectively. Moreover, Virus inoculated in the porcine tendon and skin was observed that poliovirus (PV) was $6.26{\pm}0.332$ and $6.88{\pm}0.3kGy$, and porcine parvovirus (PPV) was $1.75{\pm}0.131$ and $1.73{\pm}0.2kGy$ and bovine viral diarrhoea virus (BVDV) was $3.70{\pm}0.212$ and $3.81{\pm}0.2kGy$ on gamma irradiation, respectively. Virus showed higher resistance compared to bacteria on gamma irradiation, but was not detected CPE (cytopathic effect) by virus both tendon and skin at 25 kGy, a standard dose recommended from IAEA for sterilization of medical products. Therefore, These results were considered that gamma irradiation could control effectively bacteria and virus to develop safe porcine xenograft, and apply same irradiation doses to all tissues including tendon and skin of porcine.

Selection of Skin-Penetrating Peptide Using Phage Display (파지 디스플레이를 이용한 피부 투과 기능성 펩타이드의 개발)

  • Lee, Seol-Hoon;Kang, Nae Gyu;Lee, Sanghwa
    • YAKHAK HOEJI
    • /
    • v.57 no.2
    • /
    • pp.125-131
    • /
    • 2013
  • Biologically active peptides, including growth factors and cytokines, participate in various biological processes in human skin. They could provide a great advantage of maintaining healthy skin. Many peptide growth factors like epidermal growth factor (EGF) and human growth hormone (hGH) have been used in cosmetic formulations. The delivery of peptide growth factors across the Stratum corneum, however, seems not sufficient because of their physical properties such as high molecular weight and hydrophilicity. So increasing the penetration of growth factors of interest into skin would be a major concern for ensuring their maximum biological efficacy. In this study, we have identified several skin penetration-enhancing peptides which facilitate delivery of growth factors, when fused at N-terminus of the target protein, into skin. For efficient and rapid screening, we constructed a skin-penetrating assay system using Franz cell and porcine skin. Next, we carried out phage display screening using M-13 bacteriophage with random 12 -amino acid library on its coat protein P3 on that system. After several selection rounds, peptide sequences facilitate the penetration of phages through the porcine skin were identified from a large population of phages. We found that phages with the most potent peptide (S3-2, NGSLNTHLAPIL) could penetrate the porcine skin eight times more than those with control peptide (12 mino acids scrambled peptide). Furthermore, growth factors conjugated with S3-2 peptide penetrate porcine skin three to five times efficiently than non-conjugated growth factors. In conclusion, our data shows that the skin penetration-enhancing peptide we have characterized could increase the delivery of growth factors and is useful for cosmeceutical application.

Interaction of Porcine Myofibrillar Proteins and Various Gelatins: Impacts on Gel Properties

  • Noh, Sin-Woo;Song, Dong-Heon;Ham, Youn-Kyung;Kim, Tae-Kyung;Choi, Yun-Sang;Kim, Hyun-Wook
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.229-239
    • /
    • 2019
  • The objectives of this study were to determine the interaction between porcine myofibrillar proteins and various gelatins (bovine hide, porcine skin, fish skin, and duck skin gelatins) and their impacts on gel properties of porcine myofibrillar proteins. Porcine myofibrillar protein was isolated from pork loin muscle (M. longissimus dorsi thoracis et lumborum). Control was prepared with only myofibrillar protein (60 mg/mL), and gelatin treatments were formulated with myofibrillar protein and each gelatin (9:1) at the same protein concentration. The myofibrillar protein-gelatin mixtures were heated from $10^{\circ}C$ to $75^{\circ}C$ ($2^{\circ}C/min$). Little to no impacts of gelatin addition on pH value and color characteristics of heat-induced myofibrillar protein gels were observed (p>0.05). The addition of gelatin slightly decreased cooking yield of heat-induced myofibrillar protein gels, but the gels showed lower centrifugal weight loss compared to control (p<0.05). The addition of gelatin significantly decreased hardness, cohesiveness, gumminess, and chewiness of heat-induced myofibrillar gels. Further, sodium dodecyl poly-acrylamide gel electrophoresis (SDS-PAGE) showed no interaction between myofibrillar proteins and gelatin under non-thermal conditions. Only a slight change in the endothermic peak (probably myosin) of myofibrillar protein-gelatin mixtures was found. The results of this study show that the addition of gelatin attenuated the water-holding capacity and textural properties of heat-induced myofibrillar protein gel. Thus, it could be suggested that well-known positive impacts of gelatin on quality characteristics of processed meat products may be largely affected by the functional properties of gelatin per se, rather than its interaction with myofibrillar proteins.

Effects of Porcine Placenta Extract Ingestion on Ultraviolet B-induced Skin Damage in Hairless Mice

  • Hong, Ki-Bae;Park, Yooheon;Kim, Jae Hwan;Kim, Jin Man;Suh, Hyung Joo
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.413-420
    • /
    • 2015
  • The aim of our study was to evaluate the potential benefits of an oral supplement containing porcine placenta extract (PPE) on skin parameters related to cutaneous physiology and aging. PPEs were administered orally to hairless mice for 12 wk. The effects of oral PPE administration on skin water-holding capacity and Transepidermal Water Loss (TEWL) were similar to those of oral collagen (HYCPU2) administered as a positive control. Magnified photographs and replica images showed a reduction in UVB-induced wrinkle formation after collagen and PPE treatments. PPE treatments ameliorated the thicker skin surface that results from UVB exposure, based on a histological examination of skin tissue. The groups that were orally administered PPE (0.05%, OL; 0.1%, OH group) showed significantly reduced Matrix Metaloproteinase-2 (MMP-2) mRNA expression levels compared with the UVB control (Con), by 33.5% and 35.2%, respectively. The mRNA expression of another collagen-degrading protein, MMP-9, was also significantly lower in the groups that received oral administration of PPE (especially in the OH group) than in the control group. Additionally, oral administration of PPE significantly upregulated tissue inhibitor of metalloproteinase-1 (TIMP-1) and -2 mRNA expression levels compared with expression levels in the control group (p<0.05). This indicates that orally administered PPE activated the expression of Timp-1 and -2, inhibitors of MMP, which is responsible for collagen degradation in skin. Taken together, we propose that long-term oral administration of PPE might have a beneficial effect with respect to skin photo-aging.

Recent Progress on Skin-Derived Mesenchymal Stem Cells in Pigs

  • Kumar, B. Mohana;Patil, Rajreddy;Lee, Sung-Lim;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.283-290
    • /
    • 2012
  • Skin serves as an easily accessible source of multipotent stem cells with potential for cellular therapies. In pigs, stem cells from skin tissues of fetal and adult origins have been demonstrated as either floating spheres (cell aggregates) or adherent spindle-shaped mesenchymal stem cell (MSC)-like cells depending on culture conditions. The cells isolated from the epidermis and dermis of porcine skin showed plastic adherent growth in the presence of serum and positively expressed a range of surface and intracellular markers that are considered to be specific for MSCs. The properties of primitive stem cells have been observed with the expression of alkaline phosphatase and markers related to pluripotency. Further, studies have shown the ability of skin-derived MSCs to differentiate in vitro along mesodermal, neuronal and germ-line lineages. Moreover, preclinical studies have also been performed to assess their in vivo potential, and the findings appear to be effective in tissue regeneration at the defected site after transplantation. The present review describes the recent progress on the biological features of porcine skin-derived MSCs as adherent cells, and summarizes their potential in advancing stem cell based therapies.

Purification and Characterization of Dermatan Sulfate from Eel Skin. Anguilla japonica

  • Lee, In-Seon;Sakai-Shinobu;Kim, Wan-Seok;Nakamura-Ayako;Imanari-Toshio;Toida-Toshihiko;Kim, Yeong-Shik
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.316.1-316.1
    • /
    • 2002
  • Dermatan sulfate (DS) was isolated from eel skin (Anguilla japonica) bv actinase and endonuclease digeslions followed by ${\beta}$-elimination reaction and DEAE-Sephacel chromatography. DS was a major glycosaminoglycan in eel skin with 88% of the total uronic acid. The content of IdoA2S$\alpha$1longrightarrow4GalNAc4S sequence in eel skin. which is known to be a binding site to heparin cofactor II. was two times higher than that of dermatan sulfate from porcine skin. The anti-lla activity of eel skin dermatan sulfate mediated through heparin cofactor ll(NCL) was 25 units/mg. whereas DS from porcine skin shows 23.2 units/mg. The average molecular weight was determined as 14 kDa by gel chromatography on a TSKgel G3000SWXL column. Based on H1 NMR spectroscopy. we suggest that 3-sulfated and/or 2.3-sulfated ldoA residues are present in the chain.

  • PDF

Porcine juvenile pustular psoriasiform dermatitis in Korea (자돈 농포성 건선양 피부염 증례 보고)

  • Yoon, Soon-Seek;Lee, Kyeong-Hyun;Bae, You-Chan;Moon, Oun-Kyong;Kwon, Yong-Kuk;Han, Hong-Ryul
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.3
    • /
    • pp.375-379
    • /
    • 2005
  • Porcine juvenile pustular psoriasiform dermatitis (PJPPD) is a disease of young pigs and characterized by nonpruritic round eruption of skin. The cause of this disease is yet undetermined but is presumed to be genetic predisposition. There may be few opportunities for veterinarian to detect this disease compared with actual situation in field because these lesions resolve spontaneously in two months. The authors detected spontaneous PJPPD case and performed clinical and pathological studies on three pigs from one farm. The specific skin lesions were observed in the forty-day old pigs of mixed breed, which were produced by the sows received semen from the same boar, restrictively. However, there was no skin lesion of pigs in suckling or fattening periods. Grossly, lesions were commonly found on the ventral abdominal part as a papule and were spreaded to the skin of whole body. With the spreading of lesions centrifugally, skin was showed as a umbilicated plaques or mosaic pattern with a few pustules or crusts. Microscopically, the most prominent lesion was the psoriasiform hyperplasia with acanthosis, down growth of rete ridges, exocytosis of eosinophils and neutrophils, ballooning degeneration of superficial epidermis, and koilocytic degeneration of keratinocytes. Additionally, there were moderate dermal edema and severe mixed cellular infiltration, especially eosinophils. No infectious agent which can cause the skin lesion, was detected or cultured, and no lesion caused by infectious agents was also observed, pathologically. With pathological results of this study, it is supposed that pathogenesis or severity of PJPPD may be related to the infiltration of eosinophil or hypersensitivity.

Transdermal Delivery of Porcine Placenta Extracts using Linolenic Acid-based Emulsion Formulations

  • Kim, Dong-Chan;Noh, Sang-Myoung;Park, Ki-Tae;Kim, Young-Bong;Baek, Kwang-Hyun;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.281-286
    • /
    • 2007
  • For transdermal delivery of porcine placenta extract (PPE), various emulsion formulations were prepared and evaluated. Polysorbate surfactants were used as emulsifiers and various C-18 unsaturated fatty acids as enhancers. The skin permeation of PPE was tested using a cellulose nitrate membrane-loaded Franz cell apparatus. Among emulsifiers, Tween 20 provided higher penetration effect than did Tween 80. Meanwhile, of various fatty acids, linolenic acid (18:3) revealed the highest skin permeation of PPE than the other C-18 unsaturated fatty acids. Stability of PPE emulsions was determined by cycles of freezing and thawing processes. The stability of emulsions depended on the percentage of Tween 20. Minimum 20% of Tween 20 was required to stabilize emulsions at room temperature for several days. Taken together, our results suggest that Tween 20 and linolenic acids might be key components to formulate PPE emulsion to provide the desirable skin permeability and stability.

Skin Permeability of Porcine Placenta Extracts and Its Physiological Activities

  • Han, JeungHi;Kim, Mi-Ryung;Park, Yooheon;Hong, Yang Hee;Suh, Hyung Joo
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.356-362
    • /
    • 2013
  • We investigated the skin permeability and various biological activities of porcine homogenate of placenta (HP) with the highest protein contents (452.89 ${\mu}g/mg$). The content of protein in subcritical extract of HP (SPE) was decreased from the initial content of 452.9 ${\mu}g/mg$ to 262.7 ${\mu}g/mg$ at 3 h subcritical extract. The contents of amino type nitrogen (A-N) were sharply increased from 35.1 ${\mu}g/mg$ of initial content to 305.9 ${\mu}g/mg$ at 3 h subcritical extract. The HP showed a noticeable activity in terms of antioxidant capacity for ferric reducing antioxidant power (FRAP) assay and especially for 2,2'-Azinobis- (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) method. HP, SPE-0.5, SPE-2 and SPE-3 showed inhibitory effect on elastase activities with an $IC_{50}$ of 46.1, 42.9, 31.6 and 34.7 ${\mu}g/mL$, respectively. SPEs showed more significantly inhibitory effect than HP (p<0.05). The skin permeability of the SPEs was higher than that of the HP. SPE-3 showed highest skin permeation and the permeability was significantly higher than that of HP. SPE-2 also showed significantly higher permeation than HP after 4 h. As expected, increase of extraction time significantly increased skin permeability in the subcritical extract of HP (SPE). From these results, in terms of cost and source availability, porcine placenta extracted with subcritical extraction has advantages over untreated PE and have potential as a cosmetic ingredient.

Effect of Sub- and Super-critical Water Treatment on Physicochemical Properties of Porcine Skin

  • Jo, Yeon-Ji;Kim, Jae-Hyeong;Jung, Kyung-Hun;Min, Sang-Gi;Chun, Ji-Yeon
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Super- and sub-critical water treatments have been of interest as novel methods for protein hydrolysis. In the present study, we studied the effect of sub-critical water (Sub-$H_2O$, $300^{\circ}C$, 80 bar) treatment as well as super-critical water (Super-$H_2O$, $400^{\circ}C$, 280 bar) treatment on the physicochemical properties of porcine skin (PS), which has abundant collagen. Porcine skin was subjected to pre-thermal treatment by immersion in water at $70^{\circ}C$, and then treated with sub- or super-critical water. Physicochemical properties of the hydrolysates, such as molecular weight distribution, free amino acid content, amino acid profile, pH, color, and water content were determined. For the molecular weight distribution analysis, 1 kDa hydrolyzed porcine skin (H-PS) was produced by Super-$H_2O$ or Sub-$H_2O$ treatment. The free amino acid content was 57.18 mM and 30.13 mM after Sub-$H_2O$ and Super-$H_2O$ treatment, respectively. Determination of amino acid profile revealed that the content of Glu (22.5%) and Pro (30%) was higher after Super-$H_2O$ treatment than after Sub-$H_2O$ treatment, whereas the content of Gly (28%) and Ala (13.1%) was higher after Sub-$H_2O$ treatment. Super-$H_2O$ or Sub-$H_2O$ treatment affected the pH of PS, which changed from 7.29 (Raw) to 9.22 (after Sub-$H_2O$ treatment) and 9.49 (after Super-$H_2O$ treatment). Taken together, these results showed that Sub-$H_2O$ treatment was slightly more effective for hydrolysis than Super-$H_2O$ was. However, both Sub-$H_2O$ and Super-$H_2O$ treatments were effective processing methods for hydrolysis of PS collagen in a short time and can be regarded as a green chemistry technology.