• Title/Summary/Keyword: porcine myeloid antimicrobial peptide

Search Result 3, Processing Time 0.022 seconds

Structural Studies of Porcine Myeloid Antibacterial Peptide, PMAP-23 in DPC micelles by NMR Spectroscopy

  • Park, Kyoungsoo;Songyub Shin;Kyungsoo Hahm;Kim, Yangmee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.29-29
    • /
    • 2001
  • Leukocytes are important elements in the host defense against microbial infections. A variety of antimicrobial peptides named as the cathelicidin family have been identified from leukocytes. PMAP-23 derived from porcine myeloid cells is an antimicrobial peptide belong to the cathelicidin family. PMAP-23 was reported to have potent growth inhibition activity against bacterial and tumor cells with no hemolytic activity.(omitted)

  • PDF

Enhanced Expression and Functional Characterization of the Recombinant Putative Lysozyme-PMAP36 Fusion Protein

  • Rao, Zhili;Kim, So Young;Akanda, Md Rashedunnabi;Lee, Su Jin;Jung, In Duk;Park, Byung-Yong;Kamala-Kannan, Seralathan;Hur, Jin;Park, Jung Hee
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.262-269
    • /
    • 2019
  • The porcine myeloid antimicrobial peptide (PMAP), one of the cathelicidin family members, contains small cationic peptides with amphipathic properties. We used a putative lysozyme originated from the bacteriophage P22 (P22 lysozyme) as a fusion partner, which was connected to the N-terminus of the PMAP36 peptide, to markedly increase the expression levels of recombinant PMAP36. The PMAP36-P22 lysozyme fusion protein with high solubility was produced in Escherichia coli. The final purified yield was approximately 1.8 mg/L. The purified PMAP36-P22 lysozyme fusion protein exhibited antimicrobial activity against both Gram-negative and Grampositive bacteria (Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Bacillus subtilis). Furthermore, we estimated its hemolytic activity against pig erythrocytes as 6% at the high concentration ($128{\mu}M$) of the PMAP36-P22 lysozyme fusion protein. Compared with the PMAP36 peptide (12%), our fusion protein exhibited half of the hemolytic activity. Overall, our recombinant PMAP36-P22 lysozyme fusion protein sustained the antimicrobial activity with the lower hemolytic activity associated with the synthetic PMAP36 peptide. This study suggests that the PMAP36-P22 lysozyme fusion system could be a crucial addition to the plethora of novel antimicrobials.

Structure and Antibiotic Activity of a Porcine Myeloid Antibacterial Peptide, PMAP-23 and its Analogues

  • Shin, Song-Yub;Kang, Joo-Hyun;Jang, So-Yun;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • PMAP-23 is a 23-residue antimicrobial peptide derived from porcine myloid cells. In order to investigate the effects of two Pro residues at positions 12 and 15 of PMAP-23 on antibiotic activity, two analogues in which Ala was substituted for Pro residue at position 12 or 15 were synthesized. $Pro^{12}{\rightarrow}Ala$ (PMAPl) or $Pro^{15}{\rightarrow}Ala$(PMAP2) substitution in PMAP-23 caused a significant reduction on antitumor and phospholipid vesicle-disrupting activities, but did not cause a significant effect on antibacterial activity. PMAP-23 displayed the type I ${\beta}-turn$ structure with a negative ellipticity at near 205 om in SDS micelle, whereas PMAP1 and PMAP2 had a somewhat ${\alpha}-helical$ propensity in TFE solution, as compared to PMAP-23. These results suggest that two Pro residues of positions 12 and 15 in PMAP-23 play important roles in the formation of ${\beta}-turn$ structure on lipid membrane and its ${\beta}-turn$ structure may be essential for antibiotic activity including phospholipid vesicle-disrupting property.

  • PDF