Browse > Article
http://dx.doi.org/10.14348/molcells.2019.2365

Enhanced Expression and Functional Characterization of the Recombinant Putative Lysozyme-PMAP36 Fusion Protein  

Rao, Zhili (Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University)
Kim, So Young (Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University)
Akanda, Md Rashedunnabi (College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University)
Lee, Su Jin (Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University)
Jung, In Duk (Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University)
Park, Byung-Yong (College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University)
Kamala-Kannan, Seralathan (Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University)
Hur, Jin (Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University)
Park, Jung Hee (Division of Biotechnology, College of Environmental & Bioresources Sciences, Chonbuk National University)
Abstract
The porcine myeloid antimicrobial peptide (PMAP), one of the cathelicidin family members, contains small cationic peptides with amphipathic properties. We used a putative lysozyme originated from the bacteriophage P22 (P22 lysozyme) as a fusion partner, which was connected to the N-terminus of the PMAP36 peptide, to markedly increase the expression levels of recombinant PMAP36. The PMAP36-P22 lysozyme fusion protein with high solubility was produced in Escherichia coli. The final purified yield was approximately 1.8 mg/L. The purified PMAP36-P22 lysozyme fusion protein exhibited antimicrobial activity against both Gram-negative and Grampositive bacteria (Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Bacillus subtilis). Furthermore, we estimated its hemolytic activity against pig erythrocytes as 6% at the high concentration ($128{\mu}M$) of the PMAP36-P22 lysozyme fusion protein. Compared with the PMAP36 peptide (12%), our fusion protein exhibited half of the hemolytic activity. Overall, our recombinant PMAP36-P22 lysozyme fusion protein sustained the antimicrobial activity with the lower hemolytic activity associated with the synthetic PMAP36 peptide. This study suggests that the PMAP36-P22 lysozyme fusion system could be a crucial addition to the plethora of novel antimicrobials.
Keywords
circular dichroism spectroscopy; hemolytic activity; minimum inhibitory concentration; porcine myeloid antimicrobial peptide; transmission electron microscope;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Takahashi, D., Shukla, S.K., Prakash, O., and Zhang, G. (2010). Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92, 1236-1241.   DOI
2 Tang, Y.Q., Yuan, J., Osapay, G., Osapay, K., Tran, D., Miller, C.J., Ouellette, A.J., and Selsted, M.E. (1999). A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286, 498-502.   DOI
3 Teixeira, V., Feio, M.J., and Bastos, M. (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51, 149-177.   DOI
4 van Kan, E.J., Demel, R.A., van der Bent, A., and de Kruijff, B. (2003). The role of the abundant phenylalanines in the mode of action of the antimicrobial peptide clavanin. Biochim. Biophys. Acta 1615, 84-92.   DOI
5 Wang, G., Li, X., and Wang, Z. (2016). APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087-1093.   DOI
6 Yeaman, M.R., and Yount, N.Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27-55.   DOI
7 Yeung, A.T., Gellatly, S.L., and Hancock, R.E. (2011). Multifunctional cationic host defence peptides and their clinical applications. Cell Mol. Life Sci. 68, 2161-2176.   DOI
8 Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.   DOI
9 Zheng, L., McQuaw, C.M., Ewing, A.G., and Winograd, N. (2007). Sphingomyelin/phosphatidylcholine and cholesterol interactions studied by imaging mass spectrometry. J. Am. Chem. Soc. 129, 15730-15731.   DOI
10 Bahnsen, J.S., Franzyk, H., Sayers, E.J., Jones, A.T., and Nielsen, H.M. (2015). Cell-penetrating antimicrobial peptides-prospectives for targeting intracellular infections. Pharm. Res. 32, 1546-1556.   DOI
11 Bulet, P., Dimarcq, J.L., Hetru, C., Lagueux, M., Charlet, M., Hegy, G., Van Dorsselaer, A., and Hoffmann, J.A. (1993). A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268, 14893-14897.   DOI
12 Ding, R., Lin, C., Wei, S., Zhang, N., Tang, L., Lin, Y., Chen, Z., Xie, T., Chen, X., Feng, Y., et al. (2017). Therapeutic benefits of mesenchymal stromal cells in a rat model of hemoglobin-induced hypertensive intracerebral hemorrhage. Mol. Cells 40, 133-142.   DOI
13 Hancock, R.E., and Sahl, H.G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551-1557.   DOI
14 Huang, Y., Huang, J., and Chen, Y. (2010). Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1, 143-152.   DOI
15 Ingham, A.B., and Moore, R.J. (2007). Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem. 47, 1-9.   DOI
16 Jacoby, T.S., Kuchenbecker, R.S., Dos Santos, R.P., Magedanz, L., Guzatto, P., and Moreira, L.B. (2010). Impact of hospital-wide infection rate, invasive procedures use and antimicrobial consumption on bacterial resistance inside an intensive care unit. J. Hospital Infect. 75, 23-27.   DOI
17 Li, Y., Xiang, Q., Zhang, Q., Huang, Y., and Su, Z. (2012). Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37, 207-215.   DOI
18 Lv, Y., Wang, J., Gao, H., Wang, Z., Dong, N., Ma, Q., and Shan, A. (2014). Antimicrobial properties and membrane-active mechanism of a potential alpha-helical antimicrobial derived from cathelicidin PMAP-36. PLoS One 9, e86364.   DOI
19 Lyu, Y., Yang, Y., Lyu, X., Dong, N., and Shan, A. (2016). Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Scientific Reports 6, 27258.   DOI
20 Mai, X.T., Huang, J., Tan, J., Huang, Y., and Chen, Y. (2015). Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. J. Pept. Sci. 21, 561-568.   DOI
21 Miki, T., and Hardt, W.D. (2013). Outer membrane permeabilization is an essential step in the killing of gram-negative bacteria by the lectin RegIIIbeta. PLoS One 8, e69901.   DOI
22 Pedulla, M.L., Ford, M.E., Karthikeyan, T., Houtz, J.M., Hendrix, R.W., Hatfull, G.F., Poteete, A.R., Gilcrease, E.B., Winn-Stapley, D.A., and Casjens, S.R. (2003). Corrected sequence of the bacteriophage p22 genome. J. Bacteriol. 185, 1475-1477.   DOI
23 Rennell, D., and Poteete, A.R. (1989). Genetic analysis of bacteriophage P22 lysozyme structure. Genetics 123, 431-440.   DOI
24 Scocchi, M., Zelezetsky, I., Benincasa, M., Gennaro, R., Mazzoli, A., and Tossi, A. (2005). Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS J. 272, 4398-4406.   DOI
25 Storici, P., Scocchi, M., Tossi, A., Gennaro, R., and Zanetti, M. (1994). Chemical synthesis and biological activity of a novel antibacterial peptide deduced from a pig myeloid cDNA. FEBS Lett. 337, 303-307.   DOI
26 Subbalakshmi, C., Bikshapathy, E., Sitaram, N., and Nagaraj, R. (2000). Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin. Biochem. Biophys. Res. Commun. 274, 714-716.   DOI