• Title/Summary/Keyword: porcine liver

Search Result 88, Processing Time 0.018 seconds

Polyacrylamide Gel Immobilization of Porcine Liver Esterase for the Enantioselective Production of Levofloxacin

  • Lee, Sang-Yoon;Min, Byung-Hyuk;Song, Seong-Won;Oh, Sun-Young;Lim, Sang-Min;Kim, Sang-Lin;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.179-182
    • /
    • 2001
  • Porcine liver esterase was immobilized in polyacrylamide gel for the enantioselective production of levofloxacin from ofloxacin butyl ester. The initial activity of immobilized esterase was found to be significantly affected by the polyacrylamide gel composition. The optimum concentrations of monomer and crosslinker were determined to be 20% and 8.3%, respectively. The activity of immobilized esterase was 55.4% compared to a free enzyme. Enantiomeric excess was maintained at 60%, almost the same level as that of free enzyme. In addition, the immobilized esterase could be used repeatedly up to 10 times without experiencing any severe loss of activity and enantioselectivity.

  • PDF

Studies on the Purification and Partial Characterization of Cysteinesulfinic Acid Decarboxylase from Porcine Liver

  • Lee, Hong-Mie;Jones, Evan E.
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.335-342
    • /
    • 1996
  • Porcine liver cysteinesulfinic acid decarboxylase was purified approximately 460-fold by means of ammonium sulfate fractionation and sequential column chromatographic separation with Sephadex G-100, DEAE-cellulose and hydroxylapatite. The enzyme has a flat pH profile with maximum activity occurring between pH 6.0 and 7.6. Pyridoxal 5'-phosphate must be present in all buffers used for purification procedures in order to stabilize the enzyme. Addition of sulfhydryl reagents such as 2-mercaptoethanol are also necessary to maintain maximum enzyme activity throughout purification. The absorption spectrum shows that cysteinesulfinic acid decarboxylase is a pyridoxal 5' -phosphate-containing protein. The major absorption is at 280 nm with two smaller absorption regions, one at 425 nm which is ascribed to a Schiffs base between pyridoxal phosphate and protein, and another at 325 nm which is thought to be due to the interaction of 2-mercaptoethanol with the Schiffs base. A number of divalent cations tested did not affect enzyme activity with the exception of mercury, copper, and zinc which are inhibitory. The partially purified enzyme has an apparent $K_m$ of 0.94 mM for cysteinesulfinate. Cysteic acid is a competitive inhibitor of the enzyme with a $K_i$ of 1.32 mM. The molecular weight of the enzyme was estimated to be about 79,600 by using Sephadex G-200 column chromatography.

  • PDF

The Effect of Dietary Docosahexaenoic Acid Enrichment on the Expression of Porcine Hepatic Genes

  • Chang, W.C.;Chen, C.H.;Cheng, W.T.K.;Ding, S.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.768-774
    • /
    • 2007
  • To study the effect of dietary docosahexaenoic acid (DHA) enrichment on the expression of hepatic genes in pigs, weaned, crossbred pigs (30 d old) were fed diets supplemented with either 2% tallow or DHA oil for 18 d. Hepatic mRNA was extracted. Suppression subtractive hybridization was used to explore the hepatic genes that were specifically regulated by dietary DHA enrichment. After subtraction, we observed 288 cDNA fragments differentially expressed in livers from pigs fed either 2% DHA oil or 2% tallow for 18 d. After differential screening, 7 genes were found to be differentially expressed. Serum amyloid A protein 2 (SAA2) was further investigated because of its role in lipid metabolism. Northern analysis indicated that hepatic SAA2 was upregulated by dietary DHA enrichment (p<0.05). In a second experiment, feeding 10% DHA oil for 2d significantly increased the expression of SAA2 (compared to the 10% tallow group; p<0.05). The porcine SAA2 full length cDNA sequence was cloned and the sequence was compared to the human and mouse sequences. The homology of the SAA2 amino acid sequence between pig and human was 73% and between pig and mouse was 62%. There was a considerable difference in SAA2 sequences among these species. Of particular note was a deletion of 8 amino acids, in the pig compared to the human. This fragment is a specific characteristic for the SAA subtype that involved in acute inflammation reaction. Similar to human and mouse, porcine SAA2 was highly expressed in the liver of pigs. It was not detectable in the skeletal muscle, heart muscle, spleen, kidney, lung, and adipose tissue. These data suggest that SAA2 may be involved in mediation of the function of dietary DHA in the liver of the pig, however, the mechanism is not yet clear.

Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology

  • Yu, Hui-Chuan;Tan, Fa-Jui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1612-1619
    • /
    • 2017
  • Objective: The objective of this study was to optimize ultrasonic-assisted enzymatic hydrolysis conditions, including enzyme-to-substrate (E/S) ratio, pH, and temperature, for producing porcine liver hydrolysates (PLHs) with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity by using response surface methodology (RSM). Methods: The study used RSM to determine the combination of hydrolysis parameters that maximized the antioxidant activity of our PLHs. Temperature ($40^{\circ}C$, $54^{\circ}C$, and $68^{\circ}C$), pH (8.5, 9.5, and 10.5), and E/S ratio (0.1%, 2.1%, and 4.1%) were selected as the independent variables and analyzed according to the preliminary experiment results, whereas DPPH free radical scavenging activity was selected as the dependent variable. Results: Analysis of variance showed that E/S ratio, pH, and temperature significantly affected the hydrolysis process (p<0.01). The optimal conditions for producing PLHs with the highest scavenging activity were as follows: E/S ratio, 1.4% (v/w); temperature, $55.5^{\circ}C$; and initial pH, 10.15. Under these conditions, the degree of hydrolysis, DPPH free radical scavenging activity, ferrous ion chelating ability, and reducing power of PLHs were 24.12%, 79%, 98.18%, and 0.601 absorbance unit, respectively. The molecular weight of most PLHs produced under these optimal conditions was less than 5,400 Da and contained 45.7% hydrophobic amino acids. Conclusion: Ultrasonic-assisted enzymatic hydrolysis can be applied to obtain favorable antioxidant hydrolysates from porcine liver with potential applications in food products for preventing lipid oxidation.

Prevalence and pathologic study of porcine salmonellosis in Jeju (제주도 내 돼지 살모넬라증의 발생 양상 분석 및 병리학적 연구)

  • Yang, Hyoung-Seok;Kang, Sang-Chul;Kim, Ae-Ran;Jung, Byeong-Yeal;Kim, Jae-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.4
    • /
    • pp.235-243
    • /
    • 2017
  • Salmonella (S.) Typhimurium is highly contagious, and its infection may rapidly spread within pig populations of herd. According to the survey (1,191 pigs) from 2003 to 2012, 155 pigs (13.0%) were diagnosed as salmonellosis in Jeju. Major porcine salmonellosis cases (88.4%) were concentrated in 4- to 12-week-old weaned pigs, but 6 pigs (3.9%) under 4 weeks old were also diagnosed. Based on the histopathologic examinations, ulcerative enteritis (63.9%) in the large intestine and/or paratyphoid nodules formation (57.4%) in the liver were most prevalent lesions in porcine salmonellosis. Single infection of S. Typhimurium and mixed infection with more than 2 pathogens were detected in 38 (24.5%) and 117 (75.5%) in pigs, respectively. Co-infections of Porcine reproductive and respiratory syndrome virus and Porcine circovirus type 2 were very common in porcine salmonellosis in Jeju and detected in 84 (54.2%) and 59 (38.1%) pigs, respectively. Based on the serotyping tests using 41 bacterial isolates, S. Typhimurium and S. Rissen were confirmed in 39 (95.1%) and 2 (4.9%) cases, respectively.

Protein Carboxyl Ο-Methylation in Porcine Liver and Testis (돼지 간 및 정소에서 단백질 카르복실메칠화 현상)

  • 조재열;김성수;이향우;홍성렬
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.46-54
    • /
    • 2001
  • Protein carboxyl Ο-methylation is a kind of enzymatic reaction producing carboxyl methylester catalyzed by protein carboxyl Ο-methyltransferases at the carboxyl group of amino acid residues in polypeptide. Since the finding of carboxyl methylesterl many studies have been focused on the under-standing of biological functions in eukaryotes but still not clear except for roles in Ras attachment to membrane and protein repair. In this study, we investigated the protein carboxyl methylation in porcine liver and testis in respect of identification and characterization of carboxyl methylesters and natural proteinous substrates using pH stability of the esters and electrophoresis under acidic and basic conditions. We detected several kinds of methyl esters, 3 kinds each in cytosolic fractions from liver and testis. Under the treatment of strong acid and base, the ratio between base-stable substrates and unstable ones in liver (4 : 6) was different from the ratio obtained in testis (6 : 4). The methyl accepting capacities were affected by enzymatic proteolysis between the range of 55 to 65% in liver and of 35 to 45% in testis. Separation of the methylated proteins by acidic electrophoresis in the presence of urea and SDS revealed distinctively natural substrates of 26, 33 and 80 kD in the cytosol from liver and of 14, 25, 32 and 86 kD from testis. Most of the labelling, however were lost following electrophoresis under moderate alkaline condition, except for molecules of newly detected 7 and 17 kD in livers and 15, 29, 40 and 80 kD in testis. From these results, it was proposed that protein carboxyl Ο-methylation in each organs may be catalyzed by different classes of protein carboxyl Ο-methyltransferases. In addition, it is suggested that the protein carboxyl methylation in liver and testis may have different patterns in respect of natural substrates.

  • PDF

The Contents of Total Lipid and the Component of the Lipid in Porcine Variety Tissue (豚 內臟筋中 總脂質 含量과 構成脂質의 組成)

  • 양철영
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.3 no.1
    • /
    • pp.61-66
    • /
    • 1993
  • The contents of crude fat were remarkably different according to parts in porcine tissues. The most contents of total lipids in variety tissues were neutral lipid, and the nexts were phospholipid and glycolipid, where these of the most composition in liver were phospholipid and the next neutrallipid and glycolipid. The major component of the nonpolar lipids in fresh was triglyceried(58.09∼74.68%) and phospolipid in the polar lipid were phosphatidyl choline(20.14∼45.17%) and phosphatidyl ethanolamine(18.5∼30.14%) and the main component in glycolipid acylsterol glyceride(26.10∼45.15%), respectively.

  • PDF

Molecular Characterization and Expression Patterns of Porcine Eukaryotic Elongation Factor 1 A

  • Wang, H.L.;Wang, H.;Zhu, Z.M.;Yang, S.L.;Fen, S.T.;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.953-957
    • /
    • 2006
  • The eukaryotic elongation factor 1 A (EEF1A) participates in protein synthesis by forming the eEF1A GTP tRNA complex to deliver aminoacyl-tRNA to the A site of ribosomes. This study described cDNA sequences and partial genomic structure of porcine EEF1A1. The porcine EEF1A1 gene encoded a protein with 462 amino acids, which shared complete homology with human, chimpanzee and dog. The temporal expression pattern showed the diversity of EEF1A1 level in mRNA was relatively minor in prenatal embryo skeletal muscle, however, the expression decreased during aging after birth in skeletal muscle of the Chinese Tongcheng pig. The spatial expression patterns indicated that the gene expressed in skeletal muscle, heart, lung, liver, kidney, fat and spleen. In addition, we assigned the gene to porcine chromosome 1 using a radiation hybrid panel.

High Accuracy Mass Measurement Approach in the Identification of Phospholipids in Lipid Extracts: 7 T Fourier-transform Mass Spectrometry and MS/MS Validation

  • Yu, Seong-Hyun;Lee, Youn-Jin;Park, Soo-Jin;Lee, Ye-Won;Cho, Kun;Kim, Young-Hwan;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1170-1178
    • /
    • 2011
  • In the present study, the approach of high accuracy mass measurements for phospholipid identifications was evaluated using a 7 T ESI-FTMS/linear ion trap MS/MS. Experiments were carried out for porcine brain, bovine liver, and soybean total lipid extracts in both positive and negative ion modes. In total, 59, 55, and 18 phospholipid species were characterized in the positive ion mode for porcine brain, bovine liver, and soybean lipid extracts, respectively. Assigned lipid classes were PC, PE, PEt, PS, and SM. In the negative ion mode, PG, PS, PA, PE, and PI classes were observed. In the negative ion mode, for porcine brain, bovine liver, and soybean lipid extracts, 28, 34, and 29 species were characterized, respectively. Comparison of our results with those obtained by other groups using derivatization-LC-APCI MS and nano-RP-LC-MS/MS showed that our approach can characterize PC species as effectively as those methods could. In conclusion, we demonstrated that high accuracy mass measurements of total lipid extracts using a high resolution FTMS, particularly, 7T FTMS, plus ion-trap MS/MS are very useful in profiling lipid compositions in biological samples.