• Title/Summary/Keyword: poplar

Search Result 326, Processing Time 0.027 seconds

Alteration of Leaf Surface Structures of Poplars under Elevated Air Temperature and Carbon Dioxide Concentration

  • Kim, Ki Woo;Oh, Chang Young;Lee, Jae-Cheon;Lee, Solji;Kim, Pan-Gi
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • Effects of elevated air temperature and carbon dioxide ($CO_2$) concentration on the leaf surface structures were investigated in Liriodendron tulipifera (yellow poplar) and Populus tomentiglandulosa (Suwon poplar). Cuttings of the two tree species were exposed to elevated air temperatures at $27/22^{\circ}C$ (day/night) and $CO_2$ concentrations at 770/790 ppm for three months. The abaxial leaf surface of yellow poplar under an ambient condition ($22/17^{\circ}C$ and 380/400 ppm) had stomata and epicuticular waxes (transversely ridged rodlets). A prominent increase in the density of epicuticular waxes was found on the leaves under the elevated condition. Meanwhile, the abaxial leaf surface of Suwon poplar under an ambient condition was covered with long trichomes. The leaves under the elevated condition possessed a higher amount of long trichomes than those under the ambient condition. These results suggest that the two poplar species may change their leaf surface structures under the elevated air temperature and $CO_2$ concentration condition for acclimation of increased photosynthesis.

Comparison of the soda-anthraquinone pulping properties between imported Eucalyptus mixture chips and domestic yellow poplar (Liriodendron tulipifera)chips (수입산 혼합 유칼립투스 칩과 국내산 백합 나무 (Liriodendron tulipifera) 칩의 소다-안트라퀴논 (soda-anthraquinone) 펄핑 특성 비교)

  • Sung, Yong-Joo;Lee, Joon-Woo;Kim, Se-Bin;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.22-27
    • /
    • 2010
  • Pulping properties of the imported mixed eucalyptus chips and the domestic yellow poplar chips were investigated for comparing two chips as the raw materials for the hardwood chemical pulp. Soda-AQ (anthraquinone) pulping was applied for this study. The pulp from yellow poplar showed higher pulp yield than pulp from mixed eucalyptus, which comes from the lower hot-water soluble extractives and the higher polysaccharides in yellow poplar chips than those of the mixed eucalyptus chips. The yellow poplar pulp had higher average fiber length and fiber width than those of the mixed eucalyptus pulp, which led to the better respond to beating and the higher tear strength than those of the pulp from the mixed eucalyptus chips.

Optimization of L-shaped Corner Dowel Joint in Modified Poplar using Finite Element Analysis with Taguchi Method

  • Ke, Qing;Zhang, Fan;Zhang, Yachi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.204-217
    • /
    • 2016
  • Modified poplar has emerged as a potential raw material for furniture production. Lack of specific modified poplar strength information; however, restricts applications in the furniture industry especially as related to strength in corner-joints. Optimization of strength in L-shaped corner dowel modified poplar joints under compression loads utilizing finite element analysis (FEA) by Taguchi method with the focus of this study. Four experiment factors (i.e., Structure Style, Tenon Length, Tenon Diameter, and Tenon Gap), each at three levels, were conducted by adopting a $L_9-3^4$ Taguchi orthodoxy array (OA) to determine the optimal combination of factors and levels for the von Mises stress utilizing ANSYS software. Results of Signal-to-Noise ratio (S/N) analysis and the analysis of variance (ANOVA) revealed the optimal L-shaped corner dowel joint in modified poplar is $45^{\circ}$ Bevel Butt in structure style, 24 mm in tenon length, 6 mm in tenon diameter, and 20 mm in tenon gap. Tenon length and tenon gap are determined to be significant design factors for affecting von Mises Stress. Confirmation tests with optimal levels and experimental test indicated the predicted optimal condition is comparable to the actual experimental optimal condition.

Characteristics of Volatile Organic Compounds and Aldehydes Emission from Yellow poplar (Liriodendron tulipifera L.) (백합나무 판재의 VOCs 및 Aldehydes 방출특성)

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.357-366
    • /
    • 2014
  • Based on fundamental properties and machining characteristics of Yellow poplar (Liriodendron tulipifera L.), it has well performance on machinability or workability, drying, and fine surface. Additionally, yellow poplar is light weight and has bright color with high performance of bending processing, so it could be used for furniture or artworks materials and wood-based panel materials. Recently, public attention has been focused on indoor air quality, and Ministry of environment drift more tight regulation on indoor air quality for an apartment house and public facility with the times. Construction materials has been assessed emission of volatile organic compounds (VOCs) and formaldehyde according to law (No.10789), so yellow poplar is also needed to assess these emission characteristics. Emission of VOC and aldehyde compounds from dry and green wood condition of yellow poplar were investigated with KS M 1998:2009. Based on results, more than 30 compounds were detected from yellow poplar, and lower NVOC (natural VOC) were emitted than AVOC (Anthropogenic VOC) and OVOC (other VOC). Formaldehyde emission was lower than $5{\mu}g/m^3$ and acetaldehyde, ketone, and propionaldehyde were detected from yellow poplar. From dry yellow poplar, m-Tolualdehyde ($33.6{\mu}g/m^3$) was additionally detected while no detection of propionaldehyde. After drying process, amount of ketone emission increased significantly. The unique smell of yellow poplar may not only come from emission of acetaldehyde and propionaldehyde.

The Status and Prospect of Poplar Research in Korea (포플러 연구현황과 전망)

  • 구영본;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.1-17
    • /
    • 2003
  • Populus species have been as a model species in tree breeding and we have enormous varieties resulting from the poplar breeding because of their fast growth performance and short rotation age. New varieties developed in Korea are common italian poplar(P euramericana, I-214, I-476), P euramericana“Eco 28”(Italian poplar No.1) and p. deltoides“Lux”(Italian poplar No.2), which were introduced from foreign countries. As hybrid polars, Hyun-Sasi(p. alba ${\times}$ P. glandulosa No.1, No.2, No.3, No4.), P. nigra x P. maximowiczii and P. koreana x P. nigra val. italica, were developed, and P. davidiana was selected as the result of selection breeding The total plantation areas covered with the new varieties are 935,162ha that include 745,773ha of P. euramericana, 184,636ha of P. alba x P. glandulosa, and other new varieties are 4,735ha. The new poplars are contributed to increase farmer's income as well as bare land tree-planting in Korea. The technologies associated with the poplar species were developed, such as the determination of optimum site for new the poplar species, the crossing method between incompatible poplar species, and the vegetative mass propagation. In the future, poplar species will be considered for phytoremediation species at contaminated areas such as landfill sites or with lives stock's waste water as well as wood production, a shade tree like road-side tree and public park tree.

  • PDF

Transgenic poplar expressing AtNDPK2 exhibits enhanced biomass in the LMO field

  • An, Chul-Han;Kim, Yun-Hee;Park, Sung-Chul;Jeong, Jae-Cheol;Lee, Haeng-Soon;Choi, Yong-Im;Noh, Eun-Woon;Yun, Dae-Jin;Kim, Se-Bin;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.228-233
    • /
    • 2011
  • Nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes and auxin-responsive genes in plants. Previously, it was noted that the overexpression of Arabidopsis NDPK2 (AtNDPK2) under the control of an oxidative stress-inducible SWPA2 promoter in transgenic poplar (Populus alba ${\times}$ P. tremular var. glandulosa) plants (referred to as SN plants) enhanced tolerance to oxidative stress and improved growth (Plant Biotechnol J 9: 34-347, 2011). In this study, growth of transgenic poplar was assessed under living modified organism (LMO) field conditions in terms of biomass in the next year. The growth of transgenic poplar plants increased in comparison with non-transgenic plants. The SN3 and SN4 transgenic lines had 1.6 and 1.2 times higher dry weight in stems than non-transgenic plants at 6 months after planting, respectively. Transgenic poplar also exhibited increased transcript levels of auxin-response genes such as IAA1, IAA2, IAA5 and IAA6. These results suggest that enhanced AtNDPK2 expression increases plant biomass in transgenic poplar through the regulation of auxin-response genes.

Study on the course of air-drying of red pine and Italian poplar boards (소나무와 이태리포플러 판재(板材)의 천연건조(天然乾燥)에 관(關)한 시험(試驗))

  • An, Soo-Gu;Lim, Hyuk-Dong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.48-53
    • /
    • 1976
  • This Study was carried out to investigate the course of air-drying and drying defects of red pine (Pinus densiflora S. et Z.) and Italian poplar (Populus eurameriana I-476) boards 1,2 and 3cm thick in the flat pile. The results are as follows. 1. Air-drying curves for red pine and Italian poplar boards were same as figure 1 and 2. These moisture contents were lower in July and August during seasoning periods. 2. Air drying time of red pine board required to dry 15 percent moisture content in one week for 1 cm board, five weeks for 2 cm board and six weeks for 3cm board respectively. In case of Italian poplar boards, in one week for 1 cm board, four weeks for 2 cm and five weeks for 3 cm board. The thickness of board influenced the time for air drying. 3. Drying defects such as checking, warping and staining happened badly in pine than in Italian poplar boards. Especially, checking was severe in thicker board and warping in thinner board.

  • PDF

Osmotic Stress-Inducible Expression of a Lipid Transfer Protein Gene in Poplar

  • Lee, Hyo-Shin;Shin, Han-Na;Bae, Eun-Kyung;Lee, Jae-Soon;Noh, Eun-Woon
    • Korean Journal of Plant Resources
    • /
    • v.21 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • We have cloned an LTP gene (PoLTP1) from poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells and examined changes in its expression levels in response to various stresses and ABA treatment. The full-length PoLTP1 cDNA clone encodes a polypeptide of 116 amino acids with typical characteristics of LTPs, notably a conserved arrangement of cysteine residues. Southern blot analysis indicate that two or three copies of the PoLTP1 are present in the genome of the investigated hybrid poplar. In addition, northern analysis of samples from soil-grown plants indicate that PoLTP1 is tissue-specifically expressed in the leaves and flowers. The gene is significantly up-regulated by treatment with mannitol, NaCl and ABA, but not by either cold or wounding. These results indicate that PoLTP1 is involved in osmotic stress responses in poplar plants and suspension cells.

IBA Treatment of Poplar Cuttings and Soil Composition Amendment for Improved Adaptability and Survival

  • Cho, Wonwoo;Chandra, Romika;Lee, Wi-young;Kang, Hoduck
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.4
    • /
    • pp.259-266
    • /
    • 2020
  • Poplar trees from the Salicaceae family over the years have been utilized for various reasons which include prevention of deforestation as well as phytoremediation. This study aims to determine the optimal pre-treatment and soil conditions required for propagation of poplar cuttings for increased initial adaptability and survival rate. Five poplar clones (Hanan, 110, 107, DN-34, 52-225) were selected for IBA, soil composition treatments on propagation. IBA pre-treatment of cuttings were utilized 0, 10, and 100 mg l-1 concentrations. Soil compositions were amended with TKS-2+perlite 2:1 (v:v) and sandy clay loam mixed with artificial soil. According to the greenhouse results 10 mg l-1 of IBA showed a significant increase in plant height whereas 100 mg l-1 inhibited plant growth except in clone 110. Soil composition severely affected root growth and hence overall growth of the clones. Sandy clay loam soil had poor to stunted growth compared to TKS-2+perlite.

Impact of electron beam irradiation on enzymatic saccharification of yellow poplar (Liriodendron tulipifera L) (전자빔 조사 처리가 백합나무 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Sung, Yong-Joo;Han, Gyu-Seong;Cho, Nam-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.198-201
    • /
    • 2008
  • The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of yellow poplar with doses of 0$\sim$450 kGy. The higher irradiation dose resulted in the more degradation of hardwood biomass not only from carbohydrates but also from lignin. This changes originated from the irradiation resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The more improvement on enzymatic hydrolysis by the irradiation was found in the xylan than in the cellulose of yellow poplar.

  • PDF