• Title/Summary/Keyword: poorly soluble

Search Result 119, Processing Time 0.028 seconds

Effects of Developed Grape Bag on the Physiological Disorders, Pathogenic Decay and Fruit Quality in 'Campbell Early' Grapevines (개발된 포도 봉지 괘대가 '캠벨얼리' 과실의 생리장해와 병 발생 및 품질에 미치는 영향)

  • Lee, Y.C.;Moon, B.W.;Kim, M.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.81-89
    • /
    • 2004
  • The effects of developed grape bags on the micro-climate changes of bag, physiological disorder, pathogenic decay, quality and harvest time evaluation in 'Campbell Early' grapevines were studied. The temperature and light transmittance of developed grape bags showed no differences compared with the onces of conventional bag and non-bagging, but relative humidity and the amount of water evaporation were changed in all treatments. The occurrence of unfertilized fruit, poorly colored fruit, russet and gray mold rot showed no significant difference in all treatment at harvest time. Developed grape bags decreased effectively the occurrence of cracking fruit and bitter rot in 'Campbell Early' fruit. There was no difference in growth of cluster and berry, soluble solids and total acidity in fruits, degree of skin color and bloom appearance at harvest time. The skin color and fruit boom and harvest time evaluation in developed grape bags were resulted excellent compared with the once of conventional bag and non bagging.

Application of Dry Elixir System to Oriental Traditional Medicine: Taste Making of Peonjahwan by Coated Dry Elixir

  • Choi, Han-Gon;Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.66-71
    • /
    • 2000
  • Peonjahwan, an oriental traditional medicine composed of crude herbal drugs and animal tissues is bitter and poorly water-soluble. To mask the bitterness of peonjahwan and enhance the release of bilirubin, one of the crude active ingredients of peonjahwan, peonja dry elixir (PDE), was prepared using a spray-dryer after extracting the crude materials in ethanol-water solution. coated peonja dry elixir (CPDE) was then prepared by coating the PDE with Eudragit acrylic resin. Panel assessed bitterness and release test of bilirubin from PDE and CPDE were carried out and compared with peonjahwan alone. PDE was found to have little effect upon the reduction of the bitterness of peonjahwan. However, the bitterness of CPDE was found to reduce to 1/4 of that of peonjahwan due to the encapsulation of crude active ingredients by the dextrin and Eudragit shell (P<0.05). The release rate of bilirubin from PDE and CPDE for 60 min increased about 3.5- and 2.5-fold, respectively, compared to peonjahwan at pH 1.2. It is concluded that CPDE, which masked the bitterness of peonjahwan and enhanced the release of bilirubin, is a preferable delivery system for peonjahwan.

  • PDF

Solid Dispersion as a Strategy to Improve Drug Bioavailability (고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략)

  • Park, Jun-Hyung;Chun, Myung-Kwan;Cho, Hoon;Choi, Hoo-Kyun
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.283-292
    • /
    • 2011
  • Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.

Absorption Enhancer and Polymer (Vitamin E TPGS and PVP K29) by Solid Dispersion Improve Dissolution and Bioavailability of Eprosartan Mesylate

  • Ahn, Jae-Soon;Kim, Kang-Min;Ko, Chan-Young;Kang, Jae-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1587-1592
    • /
    • 2011
  • The aim of the present study was to improve the solubility and bioavailability of a poorly water-soluble drug in human body, using a solid dispersion technique (hot melt extrusion). The solid dispersion was prepared by cooling the hot melt of the drug in the carrier (Vitamin E TPGS and PVP). The dissolution rate of formulation 1 from a novel formulation prepared by solid dispersion technique was equal to release of formulation 6 (40% of eprosartan mesylate is in contrast to teveten$^{(R)}$) within 60 min (Table 1). The oral bioavailability of new eprosartan mesylate tablet having vitamin E TPGS and PVP K29 was tested on rats and dogs. Of the absorption enhancer and polymer tested, vitamin E TPGS and PVP K29, resulted in the greatest increases of AUC in animals (about 2.5-fold increase in rat and dog). When eprosartan mesylate was mixed with the absorption enhancer and polymer in a ratio of 2.94:2:1, vitamin E TPGS and PVP K29 improved eprosartan mesylate bioavailability significantly compared with the conventional immediate release (IR) tablet Teveten$^{(R)}$ (formulation 7). These results show that solid dispersion using vitamin E TPGS and PVP K29 is a promising approach for developing eprosartan mesylate drug products.

The Microsponge Delivery System of Itraconazole: Preparation, Characterization and Release Studies (이트라코나졸 마이크로스폰지의 약물 전달 시스템: 제조, 특성 및 방출 연구)

  • Cho, Young-Ho;Lee, Jong-Hwa;Kim, Hak-Hyung;Lee, Gye-Won
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • Itraconazole is a triazole antifungal agent to inhibit most fungal pathogens. To improve the oral absorption and dissolution of poorly water-soluble itraconazole, microsponge system composed of $Eudragit^{(R)}$ E100 and polyvinyl alcohol(PVA) formulated by quasi-emulsion solvent diffusion method, and its physicochemical properties and pharmacokinetic parameters of itraconazole were studied. The microsponge of itraconazole were discrete free flowing micro sized particles with perforated orange peel like morphology as visualized by scanning electron microscope (SEM). Results showed that the drug loading efficiency, production yield, and particle size of itraconazole microsponge were affected by drug to polymer ratio, the volume of internal phase containing methylene chloride, stirring rate and the concentration of PVA used. Also, the results showed that the dissolution rate of itraconazole from the microsponges was affected by drug to polymer ratio. In other words, the release rate of itraconazole from microsponges was increased from at least 27.43% to 64.72% after 2 h. The kinetics of dissolution mechanism showed that the dissolution data followed Korsmeyer-Peppas model. Therefore, these results suggest that microsponge system can be useful for the oral delivery of itraconazole by manipulating the release profile.

Parenteral Formulations Based on Albumin Particulate Technology

  • Lee, Hong-Hwa;Lee, Min-Jung;Heo, Sun-Ju;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.83-95
    • /
    • 2010
  • Over the years, nanoparticle drug delivery systems have demonstrated versatile potentials in biological, medical and pharmaceutical applications. In the pharmaceutical industry nanotechnology research has mainly focused on providing controlled drug release, targeting their delivery to specific organs, and developing parenteral formulations for poorly water soluble drugs to improve their bioavailability. Achievement in polymer industry has generated numerous polymers applicable to designing nanoparticles. From viewpoints of product development, a nanocarrier material should meet requirements for biodegradability, biocompatibility, availability, and regulatory approval crieteria. Albumin is indeed a material that fulfills such requirements. Also, the commercialization of a first albumin-bound paclitaxel nanoparticle product (Abraxane$^{TM}$) has sparked renewed interests in the application of albumin in the development of nanoparticle formulations. This paper reviews the intrinsic properties of albumin, its suitability as a nanocarrier material, and albumin-based parenteral formulation approaches. Particularly discussed in detail are albumin-based particulate injectables such as Abraxane$^{TM}$. Information on key roles of albumin in the nab$^{TM}$ technology and representative manufacturing processes of albumin particulate products are provided. It is likely that albumin-based particulate technology would extend its applications in delivering drugs, polypeptides, proteins, vaccines, nucleic acids, and genes.

Enhanced Solubility of Ibuprofen with Poloxamer 188 and Menthol (폴록사머 188 및 멘톨에 의한 이부프로펜의 용해도 증가)

  • Yong, Chul-Soon;Jung, Se-Hyun;Park, Sang-Man;Rhee, Jong-Dal;Choi, Han-Gon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.57-60
    • /
    • 2003
  • To enhance the solubility of poorly water-soluble ibuprofen with poloxamer and menthol, the effects of menthol and poloxamer 188 on the aqueous solubility of ibuprofen were investigated. In the absence and presence of additives such as ethanol and poloxamer 188, the solubility of ibuprofen increased until the ratio of menthol to ibuprofen increased from 0:10 to 4:6 followed by an abrupt decrease in solubility above the ratio of 4:6, indicating that 4 parts of ibuprofen formed eutetic mixture with 6 parts of menthol. In the presence of poloxamer, the solutions with the same ratio showed abrupt increase in the solubility of ibuprofen. Furthermore, in the presence of poloxamer, the solution with ratio of 4:6 showed more than 2.5- and 6-fold increase in the solubility of ibuprofen compared with that without additives and that without menthol, respectively. The solution with menthol/ibuprofen ratio of 1:9 and higher than 15% poloxamer 188 showed the maximum solubility of ibuprofen, 1.2 mg/ml. Thus, menthol gave the greatly enhanced solubility of ibuprofen with poloxamer 188.

EXTEMPORANEOUS MICELLAR SOLUBILIZATION OF TITRATED EXTRACT OF CENTELLA ASIATICA IN AQUEOUS MEDIA

  • Kim, Jae-Hyun;Kim, Chong-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.284-284
    • /
    • 1996
  • Titrated Extract of Centella asiatica (TECA) is a poorly water-soluble extract from the Centella asiatica. Despite excellent wound preparation causes pain due to a low aqueous solubility and high hypertonicity and therefore, the patient's compliance of this drug is low. The objective of this study is to design a formulation of TECA with an improved therapeutic applicability via an adequate solubilization. A mixture of propylene glycol and ethoxylated hydrogenated caster oil achieved an acceptable solubilization of TECA (i.e. 10%) via a formulation of micelle. A preparation of extemporaneous TECA micelle was achieved by a dilution of the original micellar formulation with either water or saline. An estimated distribution of particle size was between 15.9 and 32.6 ㎜. The osmotic pressure of the formulation was found to be much lower than that found In a commercially available injectable (i.e. Madecassole). The erthrocytic hemolysis of micellar solution was lower than that with the conventional dosage form, consistent with the osmotic pressure data. Pain score after an injection of the micellar solution was assessed by the hind-paw writhing test using ICR mice and compared with that found with the conventional injectable. The data indicated that the injection of the micellar solution was a significantly less painful. These results indicated that a micellar solubilization, followed by an extemporaneous dilution, is a novel formulation of TECA with an improved therapeutic applicability.

  • PDF

Self-Emulsifying Drug Delivery System Containing Ibuprofen for Oral Use (이부프로펜을 함유하는 경구용 자가유화 약물 송달시스템(SEDDS))

  • Choi, Jeong-Hwa;Kim, Ja-Young;Ku, Young-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.2
    • /
    • pp.99-103
    • /
    • 1999
  • Self-Emulsifying System(SES), an isotropic mixture of oil and surfactant which forms oil-in-water emulsion, is expected to improve in vitro drug dissolution and enhance in vivo drug absorption. A poorly water soluble drug, ibu-profen(IBP) was incorporated into the SES to improve absorption, and enhance bioavailability of drug. Medium chain triglyceride, glyceryl tricaprylate(GTC) as an oil, and Tween 85 as a surfactant were used to formulate SES. To characterize SESs with various concentrations of Tween 85, the phase separation and solubility of IBP-SEDDS containing IBP as a function of Tween 85 concentration were conducted, and the particle size was measured using photon correlation spectroscopic method. The SES with optimal concentration of Tween 85(35%(w/w)) was selected based on its high drug loading, small particle size and low surfactant concentration. After an oral administration of IBP-SEDDS and IBP suspension in methyl cellulose equivalent to 40.0 mg/kg to rats, the pharmacokinetic parameters were compared. The $C_{max}(163.17\;vs\;88.82\;{\mu}g/ml)$, $AUC(12897.01\;vs\;8751.13\;{\mu}g\;min/ml)$ and Bioavailability(86.44 vs 58.65%) significantly increased but $T_max(10\;vs\;20\;min)$ was significantly advanced. The current SEDDS containing IBP provide an alternative to improve an oral bio-availability of IBP.

  • PDF

Effect of Polyethylene Glycol on Physicochemical Property in Dispersing Film Formulation (분산형 필름제형의 물리적 특징에 미치는 폴리에틸렌글리콜의 영향)

  • Cho, Young Ho;Lee, Jong-Hwa;Lee, Gye Won
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.291-299
    • /
    • 2016
  • In this study, Indomethacin, the poorly water soluble drug, was selected and prepared dispersing oral disintegrating films according to the molecular weight of polyethylene glycol (PEG) which are sort of dispersing agents. Also the molecular weight and content of PEG were evaluated effect on the degree of dispersion, physical property and dissolution when making oral dispersing film containing indomethacin to find appropriate condition and suggested guidelines of making oral dispersing film. The appropriate dispersing ratio of the amount of surfactants and dispersing agent were 1% and 4%, also the stability dropped in the PEG molecular weight of 4000 or more. Drying time of oral dispersing film was $90^{\circ}C$ for 10 minutes to 12 minutes that dispersing film's property about flexibility, detachability were very good. The oral dispersion film's content used PEG 400 was $98.6{\pm}0.5%$ and the most uniform. As the molecular weight of PEG increased, dissolution time also increased. On the basis of evaluation parameter, PEG with 400~600 of molecular weight was selected as good dispersing agent in oral dispersing film. Therefore, it can be suggested guideline of preparation application study in oral dispersing film.