• Title/Summary/Keyword: poor scattering

Search Result 42, Processing Time 0.03 seconds

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G.;Chang, D.R.;Kim, H.S.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.

The Structure Determination of La2/3-xLi3x1/3-2xTiO3 by the Powder Neutron and X-ray Diffraction

  • Kang, Eun-Tae;Kwon, Young-Jean
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.513-518
    • /
    • 2003
  • La/sub 2/3-x/Li/sub 3x/□/sub 1/3-2x/TiO₃ compounds with x=0.13 and 0.12 were prepared by slow cooling (x=0.13) and rapid quenching (x=0.12) into the liquid nitrogen after sintering at 1350℃ for 6 h. Their crystal structure has been determined by Rietveld refinement of both the powder neutron and X-ray diffraction data. From neutron diffraction data, we found that the main phase was not tetragonal (P4/mmm), but trigonal (R3cH). The refinement of neutron diffraction for the slow cooled samples were in a good agreement with a new model; a mixture of trigonal (R3cH, 45.7 wt%), tetragonal (p4/mmm, 37.0 wt%), and Li/sub 0.57/Ti/sub 0.86/O₂(pbnm, 17.2 wt%), but the quenched sample was found not to contain tetragonal (p4/mmm). X-ray diffraction data couldn't be well fitted because of the Poor scattering factor of lithium ions and the similar reflection patterns among trigonal (R3cH), tetragonal (p4/mmm), and cubic (Pm3m). We also knew that one transport bottlenecks is destroyed by one La vacancy in the case of trigonal (R3cH).

The Effects of the Cutting Length of Paper Mulberry Bast Fiber on Pulping and Hanji Properties(I) - White bast of Korea grown paper mulberry - (닥나무 인피섬유의 절단장이 펄프화 및 한지의 물성에 미치는 영향(제1보) - 국산 닥 백피의 특성 -)

  • Lim, Gang-Hyouk;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.57-64
    • /
    • 2008
  • In general, the entire of paper mulberry bark, which is not cut into pieces with an appropriate length, have been used in the pulping. This kind of pulping method couldn't accomplish the improvement of beating and sheet forming efficiency. For this reason, we investigated the effects of the cutting length of paper mulberry bast fiber on pulping and Hanji (Korean traditional paper) properties, in order to develop high quality Hanji manufacturing process. The cutting length variation of paper mulberry white bast did not great effects on pulp yields. The pulp yields based on pulping methods were sulfomethylated pulping av. 57.4%, alkali-hydrogen peroxide pulping av. 55.4%, and alkaline pulping av. 53.5% respectively. The optical properties such as brightness, opacity, scattering coefficient, and absorption coefficient were slightly improved by the increase of paper mulberry white bast cutting length. The increase of paper mulberry white bast cutting length resulted in poor sheet formation. Physical properties such as breaking length, TEA, tear index, burst index, and folding endurance were slightly improved by the increase of cutting length. The modified pulping processes, which used sulfomethylated method and alkali-hydrogen peroxide method, showed better pulp and sheet properties than conventional alkaline pulping.

Novel Optical Properties of Si Nanowire Arrays

  • Lee, Munhee;Gwon, Minji;Cho, Yunae;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.179.1-179.1
    • /
    • 2014
  • Si nanowires have exhibited unique optical characteristics, including nano-antenna effects due to the guided mode resonance, significant optical absorption enhancement in wide wavelength and incident angle range due to resonant optical modes, graded refractive index, and scattering. Since Si poor optical absorption coefficient due to indirect bandgap, all such properties have stimulated proposal of new optoelectronic devices whose performance can surpass that of conventional planar devices. We have carried out finite-difference time-domain simulation studies to design optimal Si nanowire array for solar cell applications. Optical reflectance, transmission, and absorption can be calculated for nanowire arrays with various diameter, length, and period. From the absorption, maximum achievable photocurrent can be estimated. In real devices, serious recombination loss occurring at the surface states is known to limit the photovoltaic performance of the nanowire-based solar cells. In order to address such issue, we will discuss how the geometric parameters of the array can influence the spatial distribution of the optical field (resulting optical generation rate) in the nanowires.

  • PDF

Spray and Flame Characteristics of Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Diesel Engine Using In-cylinder Visualization (가시화 엔진을 이용한 직접 분사식 압축착화 디젤엔진에서 폐식용유 바이오디젤과 디젤의 분무 및 화염 특성 비교)

  • Hwang, Joonsik;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.105-113
    • /
    • 2014
  • Spray and combustion process with waste cooking oil (WCO) biodiesel and commercial diesel were analyzed in an optically-accessible single-cylinder compression ignition diesel engine equipped with a high pressure common-rail injection system. Direct imaging method was applied to investigate spray and combustion characteristics. From the mie-scattering results, it was verified that WCO biodiesel had a longer injection delay compared to diesel. Spray tip penetration length of WCO biodiesel was longer and spray angle was narrower than those of diesel due to poor atomization characteristics. In terms of combustion, WCO biodiesel showed later start of combustion, while flame was vanished more rapidly. Analysis of flame luminosity showed that WCO biodiesel combustion had lower intensity and lasted for shorter duration.

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

Determination of crystallinity index of cellulose depending on sample preparation and analysis instruments (시료 조건 및 측정방법에 따른 셀룰로오스의 결정화도 평가)

  • Ahn, Jung-Eon;Youn, Hye-Jung;Joung, Yang-Jin;Kim, Tae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.43-50
    • /
    • 2012
  • The crystallinity index is an important characteristic of cellulose. The crystallinity value is different depending on the adopted instrument. In this study, we determined a crystallinity index of cotton and wood celluloses using wide-angle X-ray scattering (WAXS), powder X-ray diffractometer (PXRD), and cross polarization/magic angle spinning solid-state $^{13}C$ nuclear magnetic resonance spectroscopy (CP/MAS solid-state $^{13}C$ NMR). The specimen was prepared in forms of powder, sheet and pallet. With the comparison of the obtained crystallinity indices of the cellulose, the effects of the analysis instrument, the sample preparation and analysis method were investigated. Among three instruments, the crystallinity indices by PXRD and NMR had a good relationship and reproducibility, and WAXS gave the crystallinity index with poor reproducibility. In the case of analysis methods of crystallinity indices, the Segal method showed higher value than that of the Ruland-Vonk method. We expect that this study would be applicable to evaluate the crystallinity index of various cellulose materials with accuracy and reproducibility.

A Study on the Carbon Composite Briquette Iron Manufacturing Using Fe-containing Process Wastes (함철부산물을 활용한 탄재 내장 단괴 제조에 관한 연구)

  • Yu, Jong Yeong;Yang, Dae Young;Shin, Hee Dong;Sohn, Il
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.34-43
    • /
    • 2015
  • Raw materials in steel industry decide on the productivity, quality and price competitiveness. Utilizing iron-containing by-products as raw materials for steel products can save the cost of cleaning up iron-containing by-products and solve environmental issues. Iron-containing by-products have a small particle size. If they are directly inserted in a steel making process, it cause a problem such as poor heat flow and scattering. To solve these problems and induce the additional reduction, study concern with iron ore-coal mixed briquette technique are conducted by many researchers. In this paper, method of making carbon composite briquette iron(CCBI) using iron-containing by-products was studied. The effect of composition of Fe-containing process wastes, reducing agent, flux and binder on formability of CCBI (carbon composite briquette iron) was measured.

Effect of the TiO2 Nanotubes in the Photoelectrode on Efficiency of Dye-sensitized Solar Cell

  • Rahman, Md. Mahbubur;Son, Hyun-Seok;Lim, Sung-Su;Chung, Kyung-Ho;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.110-115
    • /
    • 2011
  • The effect of $TiO_2$ nanotube (TNT) and nanoparticle (TNP) composite photoelectrode and the role of TNT to enhance the photo conversion efficiency in dye-sensitized solar cell (DSSC) have investigated in this study. Results demonstrated that the increase of the TNT content (1-15 %) into the electron collecting TNP film increases the open-circuit potential ($V_{oc}$) and short circuit current density ($J_{sc}$). Based on the impedance analysis, the increased $V_{oc}$ was attributed to the suppressed recombination between electrode and electrolyte or dye. Photochemical analysis revealed that the increased Jsc with the increased TNT content was due to the scattering effect and the reduced electron diffusion path of TNT. The highest $J_{sc}$ (12.6 mA/$cm^2$), Voc (711 mV) and conversion efficiency (5.9%) were obtained in the composite photoelectrode with 15% TNT. However, $J_{sc}$ and $V_{oc}$ was decreased for the case of 20% TNT, which results from the significant reduction of adsorbed dye amount and the poor attachment of the film on the fluorine-doped tin oxide (FTO). Therefore, application of this composite photoelectrode is expected to be a promising approach to improve the energy conversion efficiency of DSSC.

The Analysis of Fire Dispersion Characteristics of Vinyl and Rubber Cords Used Indoors (옥내용 비닐코드 및 고무코드의 화재확산특성 분석)

  • Choi, Chung-Seog;Shong, Kil-Mok;Kim, Dong-Ook;Kim, Dong-Woo;Kim, Young-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.130-135
    • /
    • 2005
  • The electrical fire frequently happens through careless use such as poor contact, mechanical stress on power cord sets. In this paper, we simulated a wall-model in order to investigate the patterns of fire dispersion on power cord sets which consists of vinyl cord and rubber cord, etc. The fire progress and dispersive patterns were measured by a high speed imaging system(HG-100K, REDLAKE, USA). From the results, the fire pattern of power cord sets was progressed in order of flashover, scattering and disconnection. The short-circuit of the vinyl cords happened easier than the rubber cords by the external flame. In case vinyl cord is disconnected. the fire progress is not observed because the ignition energy decreases. Whereas, the fire progressed continuously in case of the rubber cord.