• Title/Summary/Keyword: pool boiling

Search Result 224, Processing Time 0.031 seconds

Effects of the Width and Location of a Flow Disturbing Plate on Pool Boiling Heat Transfer on a Vertical Tube

  • Kang Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.191-205
    • /
    • 2003
  • Effects of the width and location of a flow disturbing circular plate, installed at a vertical tube surface, on nucleate pool boiling heat transfer of water at atmospheric pressure have been investigated experimentally. Through the tests, changes in the degree of intensity of liquid agitation have been analyzed. The plate changes the fluid flow around the tube as well as heat transfer coefficients on the tube surface. It is identified that the plate width changes the rate of the circulating flow whereas its location changes the growth of the active agitating flow. Moreover, the flow chugging was observed at the downside of the plate.

Effects of Outer Tube Length on Pool Boiling in an Annulus with Closed Bottoms (하부폐쇄 환상공간의 외부 튜브길이가 풀비등에 미치는 영향)

  • Kang Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.749-755
    • /
    • 2006
  • To improve pool boiling heat transfer in an vertical annulus with closed bottoms, the length of an outer tube has been changed from 0.2m to 0.6m. For the test, a heated tube of 19.1mm diameter and water at atmospheric pressure have been used. Annular conditions are made using glass tubes fabricated around the heated tube. The gap size of the annulus is 3.65mm. To elucidate effects of the outer tube length on heat transfer results of the annulus are compared with the data of a single unrestricted tube and the annulus with wider gap size of 6.35mm. Throughout the tests much higher heat transfer coefficients are observed for the annulus of 3.65mm gap size comparing to the other two cases. The change in the outer tube length results in much variation in heat transfer coefficients. Moreover, with shortening the length of outer tube the possibility of the CHF occurrence can be removed.

Effects of Tube Diameter on Nucleate Pool Boiling Heat Transfer (튜브 직경이 풀핵비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.930-937
    • /
    • 2000
  • A series of data sets for the heat transfer coefficient versus wall superheat has been obtained experimentally using various combinations of tube diameters ($9.7{\sim}25.5mm$), surface roughness ($15.1{\sim}60.9nm$), and tube orientations (horizontal and vertical) to obtain effects of tube diameters on nucleate pool boiling heat transfer for the saturated water at atmospheric pressure. In addition, the results are compared with the well known Cornwell and Houston's correlation for horizontal tubes to identify the deviation of the present experimental data from the correlation and the applicability of it to vertical tubes. The experimental results show that the heat transfer coefficient decreases as the tube diameter increases for both horizontal and vertical tubes and they are in good agreement with the Cornwell and Houston's correlation within ${\pm}20%$ scatter range.

Effects of Tube Inclination on Saturated Nucleate Pool Boiling Heat Transfer (튜브 경사각이 포화풀핵비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.327-334
    • /
    • 2008
  • Effects of tube inclination on pool boiling heat transfer have been studied for the saturated water at atmospheric pressure. For the analysis, seven inclination angles varying from the horizontal to the vertical and two tube diameters(25.4 and 30.0 mm) are tested. According to the results, inclination angles result in much change on heat transfer. For the same wall superheat(about $5.3^{\circ}C$) the ratio between two heat fluxes for the $45^{\circ}$ inclined and the vertical has the value of more than five when the tube diameter is 25.4mm. As the inclination angle is increasing from the horizontal to the vertical direction heat transfer is gradually increasing because of the increase in liquid agitation. However the detailed tendency depends on the ratio between the tube length and the diameter.

VARIATION OF LOCAL POOL BOILING HEAT TRANSFER COEFFICIENT ON 3-DEGREE INCLINED TUBE SURFACE

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.911-920
    • /
    • 2013
  • Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a $3^{\circ}$ inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every $45^{\circ}$ from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of $0^{\circ}$ and $180^{\circ}$, respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested.

Effects of Pool Subcooling on Boiling Heat Transfer in an Annulus

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.460-474
    • /
    • 2004
  • Effects of liquid subcooling on pool boiling heat transfer in an annulus with an open bottom have been investigated experimentally. A tube of 19.1mm diameter and the water at atmospheric pressure have been used for the fest. Up to $50^{\circ}C$ of liquid subcooling has been tested and experimental data of the annulus have been compared with the data of a single unrestricted tube. Temperatures on the heated tube surface fluctuate only slightly regardless of the heat flux in the annulus, whereas high variation is observed on the surface of the single tube. An increase in the degree of subcooling decreases heat transfer coefficients greatly both for the single tube and the annulus. Heat transfer coefficients increase suddenly at ${\Delta}T_{sub}\;{\le}\;10^{\circ}C$ and much greater change in heat transfer coefficients is observed at the annulus. To obtain effects of subcooling on heat transfer quantitatively, two new empirical equations have been suggested, and the correlations predict the empirical data within ${\pm}30\%$ error bound excluding some data at lower heat transfer coefficients.

Pool boiling heat transfer enhancement by perforated plates (천공판의 풀비등 열전달 촉진에 대한 연구)

  • Kim, Nae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1406-1415
    • /
    • 1996
  • Several recent studies have revealed that boiling heat transfer may be considerably enhanced in a narrow restricted region. In his study, the narrow restricted region was formed by attaching a perforated plate on top of a boiling surface. Through systematic experiments, effects of the hole size, hole pattern, gap width between the perforated plate and the boiling surface were investigated using water or R-113. Results show that perforated plates considerably enhance the boiling of water or R-113. For water, especially, they have outperformed commercial enhanced tubes, which confirms that boiling enhancement mechanism of the perforated plate (thin film evaporation beneath the elongated bubble) is very effective to the boiling of high surface tension liquids such as water. Optimum configuration was found - 3.0 mm hole diameter, 15 mm * 15 mm hole pattern, 0.3 ~ 0.5 mm gap width for water, and 2.0 mm hole diameter, 3.5 mm * 3.5 mm hole pattern, O.5 mm gap width for R-113. A correlation which correlates most of the data within .+-. 30% was also developed.

Effects of an Electric Field on the Dynamic Characteristics of Bubbles in Nucleate Boiling (핵비등에서 기포의 동특성에 대한 전기장의 효과)

  • 권영철;장근선;권정태;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.963-971
    • /
    • 2000
  • In order to investigate the effects of an electric field on EHD(Electro-hydrodynamic) nucleate boiling hat transfer characteristics in a nonuniform electric field under saturated pool boiling, the basic study has been performed experimentally. In the present study, the working fluid is R-113 and the plate-wire electrode system is used to generate a steep electric field gradient. Boiling parameters are investigated by using a high speed camera. The electric field distribution around a wire is obtained to understand the effect of an electric field on bubble departure/movement. The experimental results show EHD effects are much more considerable when the applied voltage increases. Bubbles depart away from the heated wire in radial direction. It is confirmed that the mechanisms of EHD nucleate boiling are closely connected with the dynamic behavior of bubbles. The boiling parameters are significantly changed by the electric field strength. With increasing applied voltages, the bubble size decreases and the nucleation site density, bubble velocity and bubble frequency increase.

  • PDF

Pool Boiling Enhancement of R-123 Using Perforated Plates (다공판을 사용한 R-123 풀비등 열전달 촉진)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.275-281
    • /
    • 2016
  • In this study, we investigate the pool boiling enhancement caused by perforated plates on top of a smooth surface. We conduct tests using R-123 at atmospheric pressure. It was shown that perforated plates significantly enhanced the pool boiling of the smooth surface. The reason may be attributed to the increased bubble contact area between the plates. The results showed that the enhancement ratio was dependent on the heat flux. At high heat flux, the enhancement ratio increased as the porosity increased. However, at low heat flux, the enhancement ratio decreased as the porosity increased. For the present investigation, the optimum configuration had a pore diameter of 2.0 mm, pore pitch of $2.5mm{\times}5.0mm$ or $5.0mm{\times}5.0mm$, and a gap width of 0.5 mm, which yielded heat-transfer coefficients that are close to those of GEWA-T. The optimum porosity for R-123 was significantly larger than that of water or ethanol. The reason for this may be the large liquid-to-vapor density ratio along with the small latent heat of vaporization of R-123. The perforated plates yielded smaller boiling hysteresis compared with that of the smooth surface.

Study on the Single Bubble Growth During Nucleate Boiling at Saturated Pool (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim Jeongbae;Lee Han Choon;Oh Byung Do;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.169-179
    • /
    • 2005
  • Nucleate boiling experiments on heating surface of constant wall temperature were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition of heating surface and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous experimental results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later (thermal) respectively. The comparisons showed good agreement in the initial and thermal growth regions. In the initial growth region including surface tension controlled, transition and inertia controlled regions as divided by Robinson and Judd, the bubble growth rate showed that the bubble radius was proportional to $t^{2/3}$ regardless of working fluids and heating conditions. And in the thermal growth region as also called asymptotic region, the bubble showed a growth rate that was proportional to $t^{1/5}$, also. Those growth rates were slower than the growth rates proposed in previous analytical analyses. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool condition. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).