• Title/Summary/Keyword: pool boiling

Search Result 224, Processing Time 0.025 seconds

Experimental Research of Characteristic of Pool Boiling Heat Transfer of Saturated Liquid Nitrogen with Helical Coil Type Heat Exchanger (나선형 튜브 열교환 방식의 포화 상태 액체질소의 비등열전달 특성에 대한 실험적 연구)

  • Seo, Mansu;Lee, Jisung;Kim, Junghan;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.59-70
    • /
    • 2020
  • Obtaining external forced convection heat transfer from bubble boiling and validating it with experimental results using cryogenic liquids are suggested to derive total heat transfer coefficient with pool boiling condition in the case of coil type heat exchanger with a bundle of tubes and to overcome the limitation of using the empirical correlation. Experiment is conducted with pool boiling heat transfer of saturate liquid nitrogen with helical coil type heat exchanger using liquid oxygen as hot stream fluid. Experimentally measured heat transfer coefficient is well-agreed with the estimated curve considering nucleate boiling and forced convection induced by bubble rise.

Mechanisms of Convective and Boiling Heat Transfer Enhancement via Ultrasonic Vibration (초음파 진동에 의한 대류 및 비등 열전달 촉진 원리에 관한 연구)

  • Kim, Yi-Gu;Kim, Ho-Young;Kang, Seoung-Min;Kang, Byung-ha;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.612-619
    • /
    • 2003
  • This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when tile local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism.

Boiling Heat Transfer from a locally Heated Surface -A Simulated Electronic Device under Liquid Immersion Cooling- (국부적인 발열부분을 가진 표면에서의 잠김 비등열전달 -전자부품 액침 냉각에서의 응용-)

  • 하광순;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.685-692
    • /
    • 1991
  • The pool boiling behavior of a heated surface has been investigated experimentally, focusing on the cases when only a part of the contact surface is heated. Characteristic boiling curves are obtained with circular metal surface test pieces heated below while immersed in Refrigerant-113. Locally heated test pieces are fabricated by inserting a heating block at the center inside a larger conducting block. Overall heat transfer rates are measured while the experimental conditions are systematically varied. The local temperature profiles along the radius are measured for conducting blocks. It is found that the conjugated boiling condition exists and the total heat fluxes should be correlated to a suitably defined temperature difference.

Flow Boiling of R-123/Oil Mixture in a Plain Tube Bundle (평활관군 내 R-123/오일의 흐름비등)

  • Lee, Jin-Wook;Lee, Jae-Ho;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.704-709
    • /
    • 2010
  • The effect of oil on flow boiling of R-123 in a plain tube bundles was experimentally investigated for a range of quality and heat flux. It is shown that the heat transfer coefficient decreased as the oil concentration increased. Comparison with the previous pool boiling data reveals that the reduction of heat transfer coefficient by oil is more pronounced in pool boiling, and the difference increased with the increase of oil concentration and heat flux. Within the experimental range, the variation of mass flux or quality has negligible effect on the heat transfer coefficient.

Effects of Bottom Inflow Area on Pool Boiling Heat Transfer in a Vertical Annulus (하부 유로단면적이 수직 환상공간 내부 풀비등열전달에 미치는 영향)

  • Kang, Myeong-Gie;Yoo, Joo-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.604-610
    • /
    • 2007
  • To investigate effects of the inflow area on pool boiling heat transfer in a vertical annulus, the inflow area at its bottom has been changed from 0 to $1060.3mm^2$. For the test, a heated tube of 34 mm diameter and water at atmospheric pressure have been used. To elucidate effects of the inflow area on heat transfer results of the annulus are compared to the data of a single unrestricted tube. The change in the inflow area at the bottom of the annulus results in much variation in heat transfer coefficients. When the inflow area is $113.1mm^2$ the deterioration point of heat transfer coefficients gets moved up to the higher heat fluxes because of the convective flow at the bottom regions.

Local Pool Boiling Coefficients on Horizontal Tubes

  • Kang Myeong-Gie
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.860-869
    • /
    • 2005
  • Local pool boiling on the outside and inside surfaces of a 51 mm diameter tube in horizontal direction has been studied experimentally in saturated water at atmospheric pressure. Much variation in local heat transfer coefficients was observed along the tube periphery. On the outside surface the maximum and the minimum are observed at ${\theta}=45^{\circ}$ and $180^{\circ}$, respectively. However, on the inside surface only the minimum was observed at ${\theta}=0^{\circ}$. Major mechanisms on the outside surface are liquid agitation and bubble coalescence while those on the inside surface are micro layer evaporation and liquid agitation. As the heat flux increases liquid agitation gets effective both on outside and inside surfaces. The local coefficients measured at ${\theta}=90^{\circ}$ can be recommended as the representative values of both outside and inside surfaces.

Effect of Liquid Subcooling on Pool Boiling Heat Transfer in Vertical Annuli with Closed Bottoms (액체과냉도가 하부폐쇄 수직환상공간 내부의 풀비등 열전달에 미치는 영향)

  • Kang Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.239-246
    • /
    • 2005
  • Effects of subcooling on pool boiling heat transfer in vertical annuli with closed bottoms have been investigated experimentally. For the test, a tube of 19.1mm diameter and the water at atmospheric pressure have been used. Three annular gaps of 7.05, 18.15, and 28.20 have been tested in the subcooled water and results of the annuli are compared with the data of a single unrestricted tube. The increase in pool subcooling results in much change in heat transfer coefficients. At highly subcooled regions, heat transfer coefficients for the annuli are much larger than those of a single tube. As the heat flux increases and subcooling decrease, a deterioration of heat transfer coefficients is observed at the annulus of 7.05mm gap. Single-phase natural convection and liquid agitation are the governing mechanisms for the single tube while liquid agitation and bubble coalescence are the major factors at the bottom closed annuli.

EFFECTS OF GEOMETRIC PARAMETERS ON NUCLEATE POOL BOILING OF SATURATED WATER IN VERTICAL ANNULI

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.271-278
    • /
    • 2009
  • Nucleate pool boiling of water in vertical annuli at atmospheric pressure has been studied experimentally and two empirical correlations have been suggested to obtain effects of geometric parameters on heat transfer. Data of the present and the previous tests range over a tube length of 0.50-0.57 m, a diameter of 16.5-34.0 mm, and an annular gap size of 3.7-44.3 mm. Through the analysis, tube bottom confinement (open or closed) has been investigated, as well. The developed correlations predict experimental data within a ${\pm}25%$ error bound. It has been identified that effects of the diameter and the length of heated tubes as well as the annular gap size should be counted into the analyses to estimate heat transfer coefficients accurately.

Nucleate Pool Boiling Heat Transfer in Vertical Annuli (수직 환상 공간 내부의 풀핵비등 열전달)

  • Gang, Myeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1113-1121
    • /
    • 2001
  • Effects of gap sizes(3.9 and 15mm) of vertical annuli and the bottom blockage on the nucleate pool boiling heat transfer at atmospheric pressure condition have been examined experimentally, and the results were compared to those with a single tube without confinement. The annular geometry resulted in significant increase in heat transfer coefficient. The effect is much enhanced with the bottom blockage. The heat transfer coefficient for the closed bottom condition is three times greater than the unconfined tube at 30kW/㎡ when the gap size is 3.9mm. However, with further increase of the heat flux much more than 70kW/㎡, all these effects were diminished.

POOL BOILING HEAT TRANSFER IN A VERTICAL ANNULUS WITH A NARROWER UPSIDE GAP

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1285-1292
    • /
    • 2009
  • The effects of the narrowed upside gap on nucleate pool boiling heat transfer in a vertical annulus were investigated experimentally. For the study, a stainless steel tube with a diameter of 25.4 mm and saturated water that kept an atmospheric condition were used. The ratio between the gaps measured at the upper and the lower regions of the annulus ranged from 0.18 to 1. Two different lengths of the modified gap also were investigated. The change in heat transfer due to the modified gap became evident as the gap ratio decreased and the length of the gap increased. As the gap ratio became less than 0.51, a significant decrease in heat transfer was observed compared to the plain annulus. The longer gap size resulted in an additional decrease in heat transfer. The major cause for the tendency was attributed to the formation of lumped bubbles around the upper region of the annulus followed by the increased flow friction between the fluid and the surface around the modified gap.