DOI QR코드

DOI QR Code

Experimental Research of Characteristic of Pool Boiling Heat Transfer of Saturated Liquid Nitrogen with Helical Coil Type Heat Exchanger

나선형 튜브 열교환 방식의 포화 상태 액체질소의 비등열전달 특성에 대한 실험적 연구

  • Seo, Mansu (Launcher Complex Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute) ;
  • Lee, Jisung (Launcher Propulsion Control Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute) ;
  • Kim, Junghan (Launcher Propulsion Control Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute) ;
  • Kang, Sunil (Launcher Complex Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute)
  • Received : 2019.12.01
  • Accepted : 2020.04.24
  • Published : 2020.06.30

Abstract

Obtaining external forced convection heat transfer from bubble boiling and validating it with experimental results using cryogenic liquids are suggested to derive total heat transfer coefficient with pool boiling condition in the case of coil type heat exchanger with a bundle of tubes and to overcome the limitation of using the empirical correlation. Experiment is conducted with pool boiling heat transfer of saturate liquid nitrogen with helical coil type heat exchanger using liquid oxygen as hot stream fluid. Experimentally measured heat transfer coefficient is well-agreed with the estimated curve considering nucleate boiling and forced convection induced by bubble rise.

본 논문에서는 기존 적층형 배관의 총 열전달 계수 경험식을 활용할 때 발생하는 한계점을 해결하고자, 외부 총 열전달 계수의 강제 대류 열전달 계수 항을 독립적으로 도출하는 간소화된 모델링을 제안하고, 이를 극저온 환경의 실험 결과로 확인하였다. 액체 산소 냉각 나선형 열교환기가 액체 질소와 열교환하는 실험 장치를 구성하고 열교환기의 열전달량을 계측하여, 외부 총 열전달 계수를 도출하였다. 측정된 외부 총 열전달 계수가 모델링으로 예측 곡선과 일치함을 확인하였다.

Keywords

Acknowledgement

본 연구는 한국형발사체 KSLV-II 개발사업(SR20014)과 한국항공우주연구원 항공우주기술시드사업(FR19B40)의 지원으로 수행되었습니다.

References

  1. Seo, M., Lee, J. and Kang, S., "Characteristic of Cooling Heat Transfer of Oxidizer for Rib-coil Heat Exchanger with Liquid Nitrogen," Korean Society of Propulsion Engineers Spring Conference, Jeju, South Korea, 2019.
  2. Seo, M., Lee, J. and Kang, S., "Heat Transfer Performance between the Internal Flow of Liquid Oxygen and Pool Boiling of Liquid Nitrogen in Vertical Helical Coil Heat Exchanger of the Ground Facility for the Korea Space Launch Vehicles," 28th Space Cryogenics Workshop, Southbury, CT, USA, 2019.
  3. Seo, M., Lee, J. and Kang, S., "Approach of Analysis Method Using Overall Heat Transfer Coefficient of Multi-layered Spiral Coil Type Heat Exchanger for Heat Transfer Characteristics," 18th Space Launch Vehicle Technology Symposium, Daejeon, South Korea, 2019.
  4. Memory, S.B., Sugiyama, D.C. and Marto, P.J., "Nucleate Pool Boiling of R-114 and R-114-oil Mixtures from Smooth and Enhanced Surfaces-I. Single Tubes," Int. J. Heat Mass Transf., Vol. 38, No. 8, pp. 1347-1361, May 1995. https://doi.org/10.1016/0017-9310(94)00263-U
  5. Memory, S.B., Akcasayar, N., Eraydin, H. and Marto, P.J., "Nucleate Pool Boiling of R-114 and R-114-oil Mixtures from Smooth and Enhanced Surfaces-II. Tube Bundles," Int. J. Heat Mass Transf., Vol. 38, No. 8, pp. 1363-1376, May 1995. https://doi.org/10.1016/0017-9310(94)00264-V
  6. Ribatski, G. and Thome, J.R., "Two-phase Flow and Heat Transfer across Horizontal Tube Bundles-A Review," Heat Transf. Eng., Vol. 28, No. 6, pp. 508-524, 2007. https://doi.org/10.1080/01457630701193898
  7. Cornwell, K., "The Influence of Bubbly Flow on Boiling from a Tube in a Bundle," Int. J. Heat Mass Transf., Vol. 33, No. 12, pp. 2579-2584, Dec. 1990. https://doi.org/10.1016/0017-9310(90)90193-X
  8. Flynn, T.M., Draper, J.W. and Roos, J. J., "The Nucleate and Film Boiling Curve of Liquid Nitrogen at One Atmosphere," Advances in Cryogenic Engineering, Vol. 7, pp. 539-545, 1962.
  9. Kang, M.G., "Pool Boiling Heat Transfer on Tandem Tubes in Vertical Alignment," Int. J. Heat Mass Transf., Vol. 87, pp. 138-144, Aug. 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.015
  10. Zhang, X., Chen, J., Xiong, W. and Jin, T., "Visualization Study of Nucleate Pool Boiling of Liquid Nitrogen with Quasi-steady Heat Input," Cryogenics., Vol. 72, pp. 14-21, 2015. https://doi.org/10.1016/j.cryogenics.2015.07.002
  11. Talaia, M.A.R., "Terminal Velocity of a Bubble Rise in a Liquid Column," Int. J. Phys. Math. Sci., Vol. 4, No. 1, pp. 220-224, 2007.
  12. Barron, R.F., Cryogenic Heat Transfer, 1st ed., Taylor&Francis, U.S.A., 1999.