• 제목/요약/키워드: polyvinylidene fluoride (PVDF)

검색결과 211건 처리시간 0.037초

Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation

  • Gao, Jiefeng;Li, Bei;Wang, Ling;Huang, Xuewu;Xue, Huaiguo
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.416-424
    • /
    • 2018
  • Oil spill and oily wastewater have now become a serious threat to the freshwater and marine environments. Porous materials with super-hydrophobicity and super-oleophilicity are good candidates for the oil adsorption and oil/water separation. Here, flexible hybrid nanofibrous membrane (FHNM) containing $SiO_2$/polyvinylidene fluoride (PVDF) microspheres was prepared by simultaneous electrospinning and electrospraying. The obtained FHNM combined the flexibility of the nanofiber mat and super-hydrophobicity of the microspheres, which could not be achieved by either only electrospinning or only electrospraying. It was found that when the weight ratio between the $SiO_2$ and PVDF reached a critical value, the $SiO_2$ nanoparticles were present on the PVDF microsphere surface, significantly improving the surface roughness and hence the contact angle of the FHNM. Compared with the pure electrospun PVDF nanofiber mat, most of the FHNMs have a higher oil adsorption capacity. The FHNM could separate the oil with water quickly under the gravity and displayed a high efficiency and good reusability for the oil/water separation. More importantly, the FHNM could not only separate the oil with the pure water but also the corrosive solution including the salt, acid and alkali solution.

효율적 차량 검지를 위한 PVDF 압전센서의 사용성 연구 (A Study on Serviceability of PVDF Piezoelectric Sensor for Efficient Vehicle Detection)

  • 정유석;오주삼
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.151-157
    • /
    • 2018
  • 교통분야에 활용되는 여러 가지 센서 중에서 PVDF(Polyvinylidene fluoride) 압전센서는 차량의 축을 검지할 수 있기 때문에 차종을 분류하여 수집하는 용도로 쓰인다. 압전센서는 주로 도로 포장에 매립하여 설치되는 형태로 교통 하중과 온도 하중에 항상 노출되므로, 평균 수명이 6년 이내로 매우 짧다. 또한 설치와 유지보수에 교통통제가 필요하고, 고장 기간 동안 데이터 수집도 중단된다. 센서의 설치 깊이를 늘린다면 교통 하중 및 온도중의 영향이 줄어들 것이고, 센서설치가 포장에 미치는 영향도 축소되어 수명의 연장을 기대할 수 있을 것이다. 따라서, 본 연구에서는 설치 깊이에 따른 센서 신호의 출력을 분석하여, 센서 제조사에서 제시한 설치 깊이인 1cm 보다 더 깊게 설치할 수 있는 가능성을 확인하였다. 추가로, 윤하중의 크기, 속도 등 다양한 변수에 따른 압전 센서의 출력 신호도 분석하였다. 윤하중은 APT를 이용하여 재하 하였다. 실험 결과, MSI BL센서는 3cm 에 설치해도 안정적으로 데이터를 수집 할 수 있는 100mV 이상의 신호가 출력되었다. 3cm 깊이에 설치한다면 센서의 기대수명 또한 증가할 것으로 예상된다. 하지만 MSI cable은 가장 얕은 1cm 깊이에서도 100mV 이하의 신호가 출력되어 현장 적용이 불가능 하다는 것이 밝혀졌다.

압전필름센서 신호를 이용한 Gr/Ep 복합재 적층판의 고속충격 손상탐지 (High-Velocity Impact Damage Detection of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals)

  • 김진원;김인걸
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.13-16
    • /
    • 2005
  • The mechanical properties of composite materials may degrade severely in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause sever damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PYDF(polyvinylidene fluoride) film sensors and strain gages were used for monitoring impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research demonstrate how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composites.

  • PDF

유전 알고리즘을 이용한 다중모드 감지기를 위한 전극의 형상 설계 (Electrode Shape Design for Multi-Mode Sensors Using Genetic Algorithm)

  • 박철휴;이기문;박현철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.637-642
    • /
    • 2004
  • This paper presents a new shape design method for the multi-mode sensor that can detect selected multiple modes for the active vibration control of mechanical structures. The structure used for this study is an isotropic cantilever beam type with a PVDF(polyvinylidene fluoride) which is bonded onto the structure as a sensor. Characteristic behaviors of the sensor are related with the electrode shapes of PVDF. The shape optimization problem is solved by defining a new multi-objective function and using the genetic algorithm. Resulting electrode shape functions have good performances to detect the multiple vibration modes. The results of analytical simulations are compared with those of experiment works. The results agree well each other. Hence, the obtained experimental results give evidence for the validity of the presented theoretical analysis of the electrode shape design problem.

  • PDF

Development of Flexible Tactile Sensor Array

  • Kim, Hyungtae;Kwangmok Jung;Lee, Kyungsub;Jaedo Nam;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.97.6-97
    • /
    • 2002
  • In this paper, we present an arrayed flexible tactile sensor, which can detect contact normal forces as well as positions. The tactile sensor is developed using Polyvinylidene Fluoride (PVDF) that is known as piezoelectric polymer, and the surface electrode is fabricated using silk-screening technique with silver. We develop a charge amplifier in order to amplify the small signal from the sensor, and a fast signal processing unit by using a DSP chip. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In the future, the developed sensor is applied to a dexterous robotic hand...$\textbullet$ Tactile sensing, PVDF, Robot hand

  • PDF

분포형 유연촉각센서 (Distributed Flexible Tactile Sensor)

  • 유기호;윤명종
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.60-65
    • /
    • 2004
  • A flexible tactile sensor away with 8 H 8 tactile elements is designed and fabricated. The material of the sensor is PVDF(polyvinylidene fluoride) film and flexible circuitry is used in the fabrication fur the flexibility of the sensor The experimental results on static and dynamic properties of the sensor are obtained and examined. The signals of a contact pressure to the sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. The processed signals of the sensor outputs are visualized in a personal computer for illustrating the shape and force distribution of a contact object. The reasonable performance for the detection of contact state is verified through sensing examples.

Comparative Study of Linear and Nonlinear Ultrasonic Techniques for Evaluation Thermal Damage of Tube-Like Structures

  • Li, Weibin;Cho, Younho;Li, Xianqiang
    • 비파괴검사학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube-like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro-damages in a tube-like structure.

코로나 대전된 PVDF 필름의 열자격 전류 (Thermally Simulated Current of Corona-Charged PVDF Film)

  • 김충혁;김귀열;홍진웅;이준웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.489-491
    • /
    • 1987
  • It has been shown that the thermally stimulated current technique can be one of the most powerful methods for evaluating the electrical properties. An unstretched $\alpha$-form specimen of corona-charged, 50[${\mu}m$],t Polyvinylidene Fluoride shows four TSC peaks designated $\delta}$, $\gamma$, $\beta$ and $\alpha$ in assending order of temperature in temperature range $-100{\sim}200^{\circ}C$. The $\delta$, $\gamma$ peaks may be attributed to the dipolar depolarization in the amorphous regions and $\beta$, $\alpha$ peaks are associated with the detrap from trapped carriers in the crystalline regions.

  • PDF

PVDF 필름의 초전특성에 공간전하가 미치는 영향 (Effect of Space Charge on the Properties of Pyroelectricity of PVDF Films)

  • 류강식;류부형;김경환;김봉흡
    • 대한전기학회논문지
    • /
    • 제37권3호
    • /
    • pp.163-170
    • /
    • 1988
  • In order to investigate the mechanism of pyroelectricity on polyvinylidene fluoride film, the observations were carried out on the characteristics of infrared spectra, thermally stimulated current and pyroelectric current. As the results obtained from the study, it was concluded that the origin for thermally stimulated current exhibited above room temperature can be attributed to hole injected from anode during poling process. Futhermore it is clarified also that the origin of pyroelectricity observed on the specimen concerned is to spontaneous polarization of CF dipole attached to molecular chain segment, however, the fraction of spontaneous polarization is largely influenced by the amount of hole injected from anode.

  • PDF

Parametric and Wavelet Analyses of Acoustic Emission Signals for the Identification of Failure Modes in CFRP Composites Using PZT and PVDF Sensors

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.520-530
    • /
    • 2007
  • Combination of the parametric and the wavelet analyses of acoustic emission (AE) signals was applied to identify the failure modes in carbon fiber reinforced plastic (CFRP) composite laminates during tensile testing. AE signals detected by surface mounted lead-zirconate-titanate (PZT) and polyvinylidene fluoride (PVDF) sensors were analyzed by parametric analysis based on the time of occurrence which classifies AE signals corresponding to failure modes. The frequency band level-energy analysis can distinguish the dominant frequency band for each failure mode. It was observed that the same type of failure mechanism produced signals with different characteristics depending on the stacking sequences and the type of sensors. This indicates that the proposed method can identify the failure modes of the signals if the stacking sequences and the sensors used are known.