• Title/Summary/Keyword: polyurethane

Search Result 1,598, Processing Time 0.032 seconds

Dynamic Response of Polyurethane Foam with Density and Temperature Effects (폴리우레탄 폼의 동적 응답에 미치는 밀도 및 온도의 영향)

  • Hwang, Byeong-Kwan;Kim, Jeong-Hyun;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Polyurethane foam is the most efficient, high-performance insulation material, used for liquefied natural gas carrier (LNGC) insulation. Because LNGC is exposed to sloshing impact load due to ship motion of 6 degrees of freedom, polyurethane foam should be sufficient dynamic properties. The dynamic properties of these polyurethane foam depends on temperature and density. Therefore, this study investigates the dynamic response of polyurethane foam for various temperature($25^{\circ}C$, $-70^{\circ}C$, $-163^{\circ}C$) and density($90kg/m^3$, $113kg/m^3$, $134kg/m^3$, $150kg/m^3$) under drop impact test with impact energy of 20J, 50J, and 80J. For dynamic response was evaluated in terms of peak force, peak displacement, absorb energy, and the mechanical property with minimized density effects. The results show the effect of temperature and density on the polyurethane foam material for the dynamic response.

Flame Retardant Property of PU by the Addition of Phosphorous Containing Polyurethane Oligomers (폴리우레탄을 인계화합물로 해중합한 올리고머의 난연성)

  • Jung, Sunyoung;Kang, Sungku;Cho, Ilsung;Koh, Sungho;Kim, Younhee;Chung, Yeongjin;Kim, Sangbum
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.376-380
    • /
    • 2007
  • Used polyurethane (PU) was chemically degraded by the treatment with flame retardants such as tris(1,3-chloro-2-propyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). Analysis of FT-IR and P-NMR showed that the degraded products (DEP) contained oligourethanes. Rigid polyurethane foam was produced using the DEP as flame retardants. The flammability and thermal stability of recycled rigid polyurethane were investigated. The mechanical properties such as compressive strength of recycled polyurethane were also studied. The recycled polyurethane reduced flammability and enhanced thermal stability over intrinsic polyurethane. Mechanical strength of recycled polyurethane also shows as high as that of intrinsic polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, heat release rate (HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of recycled PU showed a uniform cell morphology as a intrinsic PU.

A Study on Polyurethane Waterproof Material Containing Rubber Particles (고무분말을 혼입한 폴리우레탄 도막방수재에 대한 연구)

  • Kim, Jin-Kuk;Jeong, Dong-Sun
    • Elastomers and Composites
    • /
    • v.29 no.3
    • /
    • pp.207-212
    • /
    • 1994
  • Recently, the develpment of waterproof techniques has been required in morden building field. It is undoubt that one of the best materials for waterproof is polyurethane. Polyurethanes have advantages such as good adhesive ability, durability, weatherproof. However, they have disadvantages like high cost, delicate varnish layer, swelling problem. In this study, we found that the polyurethane with rubber particle of waste tire can solve those problems. We concluded that 10% of rubber particles containing polyurethane was recommened as the waterproof materials.

  • PDF

Crashworthy behaviour of rigid polyurethane foam under constant impact energy (동일 충격 에너지 조건에서의 발포 폴리우레탄의 충격특성에 관한 연구)

  • Munshi, Mahbubul Basit;Jeong, Kwang-Young;Choi, Young-Jong;Cheon, Seong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.43-47
    • /
    • 2007
  • Based on experimental impact testing data, due to changing of velocity and mass of the impactor simultaneously under constant impact energy, crashworthiness of polyurethane foam has been observed. Dynamic tests were carried out in an instrumented impact-testing machine. Also, modified Sherwood-Frost model was proposed to investigate the crashworthy behaviour of rigid polyurethane foam under the condition of constant impact energy.

  • PDF

A Study on Tool Offset for Cutting of the Polyurethane Foam (폴리우레탄폼 절삭가공시 공구보정에 관한 연구)

  • Min, Se-Hong;Kim, Hei-Song
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.31-35
    • /
    • 2000
  • After constructing master model utilizing CAD data originated by sketch, product NC data for polyurethane foam using digitized master model data. And model cutting is performed utilizing specially developed polyurethane foam cutting tool in machining center. In this study, it is discussed to construct concept of tool offset, method of tool offset and feature tolerance, etc., that is impossible for cutting of the polyurethane foam by CNC machine.

  • PDF

Effect of graphene oxide on mechanical characteristics of polyurethane foam (산화그래핀이 폴리우레탄 폼 기계적 강도에 미치는 영향)

  • Kim, Jong-Min;Kim, Jeong-Hyeon;Choe, Young-Rak;Park, Sung Kyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.493-498
    • /
    • 2016
  • In the present study, graphene oxide based polyurethane foams were manufactured as a part of the development process of mechanically strengthened polyurethane foam insulation material. This material is used in a liquefied natural gas carrier cargo containment system. The temperature of the containment system is $-163^{\circ}C$. First, graphene oxide was synthesized using the Hummers' method, and it was supplemented into polyol-isocyanate reagent by considering a different amount of graphene oxide weight percent. Then, a bulk form of graphene-oxide-polyurethane foam was manufactured. In order to investigate the cell stability of the graphene-oxide-polyurethane foam, its microstructural morphology was observed, and the effect of graphene oxide on microstructure of the polyurethane foam was investigated. In addition, the compressive strength of graphene-oxide-polyurethane foam was measured at ambient and cryogenic temperatures. The cryogenic tests were conducted in a cryogenic chamber equipped with universal testing machine to investigate mechanical and failure characteristics of the graphene-oxide-polyurethane foam. The results revealed that the additions of graphene oxide enhanced the mechanical characteristics of polyurethane foam. However, cell stability and mechanical strength of graphene-oxide-polyurethane foam decreased as the weight percent of graphene oxide was increased.

Evaluation of Thermal Performance and Mechanical Properties in the Cryogenic Environment of Basalt Fiber Reinforced Polyurethane Foam (현무암 섬유 보강 폴리우레탄폼의 열적 성능 및 극저온 환경에서의 기계적 특성 평가)

  • Jeon, Sung-Gyu;Kim, Jeong-Dae;Kim, Hee-Tae;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • LNG CCS which is a special type of cargo hold operated at -163℃ for transporting liquefied LNG is composed of a primary barrier, plywood, insulation panel, secondary barrier, and mastic. Currently, glass fiber is used to reinforce polyurethane foam. In this paper, we evaluated the possibility of replacing glass fiber-reinforced polyurethane foam with basalt fiber-reinforced polyurethane foam. We conducted a thermal conductivity test to confirm thermal performance at room temperature. To evaluate the mechanical properties between basalt and glass-fiber-reinforced polyurethane foam which is fiber content of 5 wt% and 10 wt%, tensile and an impact test was performed repeatedly. All of the tests were performed at room temperature and cryogenic temperature(-163℃) in consideration of the temperature gradient in the LNG CCS. As a result of the thermal conductivity test, the insulating performance of glass fiber reinforced polyurethane foam and basalt fiber reinforced polyurethane foam presented similar results. The tensile test results represent that the strength of basalt fiber-reinforced polyurethane foam is superior to glass fiber at room temperature, and there is a clear difference. However, the strength is similar to each other at cryogenic temperatures. In the impact test, the strength of PUR-B5 is the highest, but in common, the strength decreases as the weight ratio of the two fibers increases. In conclusion, basalt fiber-reinforced polyurethane foam has sufficient potential to replace glass fiber-reinforced polyurethane foam.

A Study on the Curing Characteristics and the Synthesis of Polyurethane Acrylate Hybrid Emulsion (폴리우레탄 아크릴레이트 하이브리드 에멀젼의 합성 및 경화특성에 관한 연구)

  • Han, Sang-Hoon;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.132-137
    • /
    • 2006
  • Polyurethane acrylate hybrid emulsions were prepared by seeded polymerization techniques. In the synthesis, seeded polyurethane dispersion containing a carboxylic group was used to endow hydrophilicity to the hybrid emulsion and various acrylates such as methyl methacrylate (MMA), 2-hydroxy ethylmethacrylate (2-HEMA), n-butyl acrylate (n-BA) and acrylic acid (AAc) were used to endow hydrophobicity. The particle size and distribution of various emulsion particles such as polyurethane acrylate hybrid emulsion, polyurethane dispersion homopolymer, acrylate emulsion, and physical blending emulsion were measured by a particle size analyzer. The average particle size of hybrid emulsion was greater than physical blending emulsion. And tensile strength, 100% modulus, elongation, and swelling properties of the polyurethane acrylate hybrid emulsion were studied and compared with those of polyurethane homopolymer, acrylate emulsion, and physically blended compositor, respectively. To improve chemical and physical resistance, this paper review a melamine hardener and compares it for effects on the physical properties of cured coating.

Preparation of Antistatic Coating Solutions by Blending Aniline Terminated Waterborne Polyurethane with PEDOT/PSS (Aniline Terminated Waterborne Polyurethane과 PEDOT/PSS의 블렌딩에 의한 대전방지 코팅용액의 제조)

  • Hong, Min Gi;Huh, Woo Young;Byun, Tae Gang;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.614-620
    • /
    • 2012
  • Polyurethane prepolymers were prepared from poly (carbonate diol), isophrone diisocyanate and dimethylol propionic acid. Then, aniline terminated waterborne polyurethane dispersion (ATPUD) was synthesized by capping the NCO group of the prepolymer with aniline monomer. Subsequently, ATPUD and waterborne polyurethane dispersion (PUD), respectively, were blended with conducting polymer, poly (3,4-ethylenedioxythiophene)/polystyrene sulfonate [PEDOT/PSS], to yield antistatic coating solutions, and the mixture was coated on the polycarbonate substrates. At adequate addition amounts of PEDOT/PSS less than or equal to 2.5 g, the surface resistances ($1.0{\times}10^{11}{\sim}2.5{\times}10^8{\Omega}/cm^2$) of coating films from ATPUD showed better electronic conductivities than those ($5.0{\times}10^{11}{\sim}6.3{\times}10^9{\Omega}/cm^2$) from PUD. However, at excess amount of PEDOT/PSS of 3.0 g, the surface resistance from ATPUD showed similar electronic conductivity with that from PUD.

Improvement of Flame-Retardant Performance of Polyurethane Foam Coated with Water Glass (물유리코팅에 따른 폴리우레탄 폼의 난연성능 개선에 대한 연구)

  • Kim, Hyeong-Jun;Park, Jewon;Na, Hyein;Lim, Hyung Mi;Chang, Gabin
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • In this study, water glass was applied as a coating material to a rigid polyurethane foam to improve the flame-retardant properties of the foam. The heat release rate of the cone calorimeter of the urethane foam, in which the inorganic water-glass coating layer was applied, decreased rapidly. The water glass coated on the polyurethane surface formed a glassy foam by foaming with water, which did not escape during the vitrification reaction when the foam or glass was heated. The glassy foam formed on the polyurethane foam became a fire-resistant insulation layer that inhibited the combustion of the polyurethane foam for more than 10 min. Water glass was found to improve the flame-retardant properties of the rigid polyurethane foam.