• Title/Summary/Keyword: polyurethane(PU)

Search Result 298, Processing Time 0.024 seconds

Preparation and Properties of Water-borne PU Having Ionic Center onto Flexible Side Chain (유연한 곁가지 말단에 이온성 작용기를 가지는 양이온성 수분산 PU의 제조와 물성)

  • Kim, Dong-Min;Bang, Moon-Soo;Kim, Hyung-Joong
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.3-9
    • /
    • 2006
  • Three isocyanate groups of IP-$75^{(R)}$ and one hydroxyl group of various amino alcohols were applied for preparing cationic type water-borne polyurthane (PU) having ionic center onto flexible side chains. Average particle size, dispersion stability, viscosity, contact angle, surface energy, glass transition temperature ($T_g$), and adhesion strength of prepared water-borne PUs were measured and analyzed with different NCO/OH mol ratios, ionomers, and neutralizing agents. It was characterized that the prepared PU has a smaller particle size and a better dispersion stability than the conventional cationic water-borne PU containing ionic centers onto main chains.

  • PDF

Performance of Poly(trimethylene terephthalate) Fabric for Swimsuit (폴리트리메틸렌테레프탈레이트를 사용한 수영복 소재의 성능)

  • 정승은;박정희;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.819-829
    • /
    • 2004
  • This study was carried out to suggest a new swimsuit fabric with improved durability, comfort and appearance, by employing PTT(polytrimethylene terephthalate). Objective and subjective performances of newly woven PTT/PU (polyurethane) blend fabric were estimated and compared with nylon/PU(80/20) which is currently used for swimsuit. According to the questionnaire, the most serious problems of swimsuit fabrics were such that they were easily degraded by chlorinated water and this made fabric inelastic and transparent. After exposure to the chlorinated water, PTT blend fabrics showed higher retention of breaking strength, bursting strength, elastic recovery and crystallinity. suggesting that PTT/PU(87/13) was the most excellent material in durability. PTT blend fabrics absorbed less water and dried faster than nylon/PU and thus PTT/PU(87/13) was shown to be the best in respect of comfort. All of the specimens used in this study exhibited satisfactory colorfastness to sea water, chlorinated water and light except that nylon/PU(80/20) represented weak colorfastness to chlorinated water. From the subjective wearing sensation test, PTT/PU(82/18) was shown to posess the best wearing sensation. From the overall evaluation or objective and subjective properties, PTT blend fabrics exhibited superior performances to nylon/PU(80/20), suggesting that they can be successfully used as a new durable and comfortable swimsuit fabric.

Toughness of Polyurethane-Modified Unsaturated Polyester Resin (폴리우레탄으로 개질한 불포화 폴리에스테르 수지의 강인성)

  • Hwang, Yeong-Geun;Min, Kyung-Eun;Choi, Gwan-Young;Kim, Woo-Sik;Lee, Dong-Ho;Park, Lee-Soon;Seo, Kwan-Ho;Kang, Inn-Kyu;Jun, Il-Ryun
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Unsaturated polyester(UP) resin is one of the major thermosetting resins. It is very useful as the matrix resin of the composite material because of its low viscosity. The polymer resin, however, has several drawbacks; The volume shrinkage occurs during the crosslinking reaction of the UP resin with styrene monomer and the resulting polymer is weak to the alkali and also brittle. The mechanical properties of UP resin can be improved by blending various materials. In this study, polyurethane(PU) was used as a modifier in order to enhance the toughness of the UP resin. The goal of the research is to study the effect of the polyol molecular weight as a PU soft segment and the PU contents on the toughness of PU-modified UP resins. UP/PU polymer network may occur through the reaction between isocyanate group in the methyldiisocyanate(MDI) and hydroxyl group in the UP molecules. The maximum toughness value was shown at 2 wt% of the PU content. This effect results from the incorporation of the PU segment into the UP resin.

  • PDF

The Effects of Polyurethane Resin on the Water Stability of HAC/PVA Based MDF Cement Composites (Polyurethane 첨가에 의한 HAC/PVA계 MDF 시멘트 복합재료의 수분안정성 영향)

  • 박춘근;김태진;김병권;엄태형;노준석;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1037-1044
    • /
    • 1997
  • Mechanical properties and water stability of HAC/PVA based MDF cement composite were investigated using polyurethane(PU) resin, silane coupling agent and various PVA. The results were as follows ; The flexural strength of MDF cement composite increased as increasing with PVA content. Low-viscosity PVA developed higher flexural strength than high-viscosity PVA under a drying curing condition. But the strength of water immersed specimen decreased. Water stability of MDF cement improved as increasing with content of PU. Consequently, water stability of polyurethane 7% added MDF cement was about 2 times higher than that of the controlled specimen. Furthermore, the strength and water stability of diamine group based silane couling agent in using MDF cement increased and improved dramatically.

  • PDF

The Effects of a Chain Extending Agent and Crosslinking Agent on the Toughness of Castor Oil based Polyurethane-Epoxy IPNs (Castor Oil형 폴리우레탄-에폭시 IPNs에서 사슬연장제와 가교제의 영향에 의한 강인성)

  • Kim, Jong-Seok;Yang, Yeong-Seok
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.639-643
    • /
    • 1999
  • Interpenetrating polymer networks(IPNs) composed of castor oil(CO) polyurethane(PU) and epoxy resin were prepared by the simultaneous polymerization technique. Two types of PU were prepared using 1,4-butanediol(BD) and BD/trimethylolpropane(TMP) as a chain extending agent and crosslinking agent. The PU/epoxy based on BD as a chain extending agent showed more shift in the damping peak than PU/epoxy based on BD/TMP as the PU content was increased. BDPU/epoxy simultaneous interpenetrating polymer networks(SINs) had a better compatibility than BD/TMP-PU/epoxy SINs. For both systems, it was postulated that unique network formation of PU/epoxy SINs as a chain extending agent and crosslinking agent had occurred to a significant extent of phase mixing. The types of chain extender in the PU were found to be an important factor in determining the phase mixing of the IPNs. When the BD/TMP-PU reaction was faster than epoxy network, the extent of phase mixing was retarded by decreasing entanglement of networks. It was found that both PU/epoxy SINs provided enhanced flexural properties and fracture toughness, fracture surfaces of BDPU/epoxy and BD/TMP-PU/epoxy SINs showed the localized shear deformation and generation of stress whitening associated with the cavitation.

  • PDF

Thermal Properties and Sound-Damping Characteristics of Polyurethane Nanocomposite Foams (폴리우레탄 나노복합 발포체의 열적 성질 및 흡음 특성)

  • Lee, Jun Mo;Ha, Chang Sik
    • Journal of Adhesion and Interface
    • /
    • v.11 no.1
    • /
    • pp.3-8
    • /
    • 2010
  • Thermal properties, flame retardant property, and sound-damping properties of polyurethane (PU) nanocomposite foams prepared with oligomeric 1,2-propanediol isobutyl polyhedral silsesquioxane (POSS) were investigated. It was found that the PU nanocomposite foams showed good sound-damping performances comparing to the PU foams without POSS.

Characterization and Mechanical Properties of Prepolymer and Polyurethane Block Copolymer with a Shape Memory Effect

  • Cho, Jae-Whan;Jung, Yong-Chae;Lee, Sun-Hwa;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.114-118
    • /
    • 2003
  • The prepolymer and the final polyurethane (PU) block copolymer were synthesized by reacting 4,4-methylene bis(phenylisocyanate) with poly(tetramethylene glycol) and the prepolymer with 1,4-butanediol as a chain extender, respectively, to investigate the relation between phase separation and it's resulting properties. According to FT-IR data, the phase separation of hard and soft segments in the prepolymer and the PU block copolymer grew bigger by increasing the hard segment content, and the PU showed more dominant phase separation than the prepolymer. The heat of fusion due to soft segments decreased in both the prepolymer and the PU by increasing the hard segment content, whereas the heat of fusion due to hard segments increased in the PU did not appear in the prepolymers. The breaking stress and modulus of the prepolymer increased by increasing the hard segment content, and the elongation at break decreased gradually, and the PU showed the highest breaking stress and modulus at 58% hard segment content. However, the best shape recovery of the PU was obtained at 47% hard segment content due to the existence of proper interaction among the hard segments for shape memory effect. Consequently, the mechanical properties and shape memory effect of the PU were influenced by the degree of phase separation, depending on the incorporation of chain extender as well as the hard segment content.

Preparation and Characterization of Polyurethane/Organoclay Nanocomposites by UV Curing (UV경화에 의한 폴리우레탄/유기화클레이 나노복합재료 제조와 물성 연구)

  • Shin, Geumsig;Chang, Young-Wook;Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.156-162
    • /
    • 2012
  • Polyurethane (PU)/organoclay nanocomposites were prepared by mixing UV curable urethane acrylate oligomer with organoclay, and a subsequent curing by UV irradiation. As organoclays, commercially available Cloisite 20A (C20A) and acrylsilane modified C20A were used. XRD and TEM analyses revealed that the UV cured PU/clay nanocomposites formed intercalated nanocomposites, and acrylsilane modified C20A are dispersed more finely than unmodified C20A in PU matrix. DMTA, pencil hardness and adhesion test onto PET substrate showed that the clay nanolayers induced an increase in the properties, and the enhancement in the properties was more pronounced in the PU/acrylsilane modified C20A nanocomposites than in the PU/unmodified C20A nanocomposites. It was also observed that the PU/surface modified clay nanocomposites showed remarkably lower shrinkage upon UV curing than the unfilled PU. The nanocomposites showed excellent optical transparency but lower gloss as compared to unfilled PU.

Study on Synthesis and Properties of Water-born Polyurethane (수분산성 폴리우레탄의 합성 및 물성에 관한 연구)

  • Cho, Ur-Ryong;Choi, Seo-Yoon
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.249-257
    • /
    • 2005
  • Polyurethane(PU) prepolymers were prepared from polyol and diisocyanate. Unionized PU prepolymers were synthesized from poly(propylene glycol)(PPG, MW: 1000), 2,2-bis (hydroxymethyl) propionic acid(DMPA), and isophorone diisocyanate(IPDI) by prepolymer syhthesizing process. After PU prepolymers were dispersed into water, the physical properties were investigated by changing the molar ratio of polyol and diisocyanate. The results showed a stable state with the best physical properties when the prepolymer was composed of PPG/DMPA with hard segment=40%, NCO%=3.43%, [NCO]: [OH]=1.5: 1.0 in molar ratio, and was dispersed into water with 30% solid content. PU prepolymers also were synthesized with various molar ratio of PPG and DMPA. Upon higher molar ratio of DMPA, particle size of polyurethane dispersion(PUD) gradually decreased. PU-prepolymers prepared from the various blocking agents represented characteristic initial deblocking temperatures that depended on the blocking agents, and the beginning of deblocking occured within 30 mins on all the blocking agents used.

Preparation and Characterization of Antimicrobial Polyurethane Foam Modified by Urushiol and Cardanol (우루시올과 카다놀을 이용한 항균성 폴리우레탄 폼의 합성에 관한 연구)

  • Kim, S.B.;Kang, S.K.;Cho, I.S.
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.124-132
    • /
    • 2008
  • Thermal and mechanical properties of flexible polyurethane foam modified by urushiol and cardanol which have been known to be antibiotic were investigated. It was observed from FT-IR spectra analysis that the urushiol reacted with isocyanate was participated in synthesis of polyurethane. It was also seen that the modification using urushiol and cardanol made the PU more thermally stable without deterioration of mechanical properties. The modified PU foams showed increased antibacterial properties compared with neat PU foam.