• Title/Summary/Keyword: polysulfone

Search Result 272, Processing Time 0.022 seconds

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

Synthesis of polysulfone beads impregnated with Ca-sepiolite for phosphate removal

  • Hong, Seung-Hee;Lee, Chang-Gu;Jeong, Sanghyun;Park, Seong-Jik
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Former studies revealed that sepiolite thermally treated at high temperature have high adsorption capacity for phosphate. However, its micron size (75 ㎛) limits its application to water treatment. In this study, we synthesized sepiolite impregnated polysulfone (PSf) beads to separate it easily from an aqueous solution. PSf beads with different sepiolite ratios were synthesized and their efficiencies were compared. The PSf beads with 30% impregnated sepiolite (30SPL-PSf bead) possessed the optimum sepiolite ratio for phosphate removal. Kinetic, equilibrium, and thermodynamic adsorption experiments were performed using the 30SPL-PSf bead. Equilibrium adsorption was achieved in 24 h, and the pseudo-first-order model was suitable for describing the phosphate adsorption at different reaction times. The Langmuir model was appropriate for describing the phosphate adsorption onto the 30SPL-PSf bead, and the maximum adsorption capacity of the 30SPL-PSf bead obtained from the model was 24.48 mg-PO4/g. Enthalpy and entropy increased during the phosphate adsorption onto the 30SPL-PSf bead, and Gibb's free energy at 35 ℃ was negative. An increase in the solution pH from 3 to 11 induced a decrease in the phosphate adsorption amount from 27.30 mg-PO4/g to 21.54 mg-PO4/g. The competitive anion influenced the phosphate adsorption onto the 30SPL-PSf bead was in the order of NO3- > SO42- > HCO3-. The phosphate breakthrough from the column packed with the 30SPL-PSf bead began after ~2000 min, reaching the influent concentration after ~8000 min. The adsorption amounts per unit mass of 30SPL-PSf and removal efficiency were 0.775 mg-PO4/g and 61.6%, respectively. This study demonstrates the adequate performance of 30SPL-PSf beads as a filter for phosphate removal from aqueous solutions.

A Study on the Preparation of Carboxylated Polysulfone/MeVpI-DVB Membranes and Its Characteristics (Carboxylated Polysulfon/MeVpl-DVB 막의 제조와 특성에 관한 연구)

  • 김관식;전경용;조영일
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.26-34
    • /
    • 1995
  • In this study, polysulfone was carboxylated(CPSf), as a method of introducing carboxyl group to polymer main chain using direct lithiation reaction. Then, poly(1-alkyl-4-vinylpyridinium iodide-co-divinylbenzene) (MeVpI-DVB) containing pyridinium cation which has an anion selectivity as a fixed carrier was synthesized. And polymer membranes were prepared by mixing CPSf and MeVpI-DVB. Characteristics and permeation of membranes were investigated. As a result of synthesizing CPSf/MeVpI-DVB, blend was formed, not new copolymer. As the content of CPSf amount increasing, thermal stability of membranes was increasing. Ion exchange capacity was 1.0~1.8(meq/g dry mem.) and water content was 0.16~0.26(g $H_2{O}$)/g dry mem.) and fixed ion concentration was 6.4~7.3(meq/g $H_2{O}$) in synthetic membranes. The $Cl^-$ flux showed an increase due to the increase of CPSf content.

  • PDF

Study on the Separation of CO2 from Flue Gas Using Polysulfone Hollow Fiber Membrane (폴리설폰 중공사막을 이용한 연소 배기가스 중 이산화탄소 분리에 관한 연구)

  • Kim, Seongcheon;Chun, Jeonghyeon;Chun, Youngnam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.147-152
    • /
    • 2014
  • In this research, polysulfone hollow fiber membrane was used to recover $CO_2$ which is one of greenhouse gases from flue gas stream being emitted after the combustion of fossil fuels. The prerequisite requirement is to design the membrane process producing high-purity $CO_2$ from flue gas. For separation of $CO_2$, a membrane module and flue gas containing 10% carbon dioxide was used. The effects of operating conditions such as pressure, temperature, feed gas composition and multi-stage membrane on separation performance were examined at various stage cuts. Higher operating pressure and temperature increased carbon dioxide concentration and recovery ratio in permeate. Recovery ratio and separation efficiency increased if a higher content of $CO_2$ injection gas composition. Three-stage membrane system was producing a 95% $CO_2$ with 90% recovery from flue gas. The separation efficiency of three-stage membrane system was higher than one-stage system.

Removal Characteristics of Sr and Cu Ions using PS-FZ Beads fabricated by Immobilization of Zeolite prepared from Coal Fly Ash from an Ulsan Industrial Complex with Polysulfone (울산산업공단에서 배출되는 coal fly ash로 합성한 제올라이트를 폴리슬폰으로 고정화하여 제조한 PS-FZ 비드의 Sr 및 Cu 제거 특성)

  • Kam, Sang-Kyu;Lee, Chang-Han;Jeong, Kap-Seop;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1623-1632
    • /
    • 2016
  • Zeolite (FZ) prepared using coal fly ash from an Ulsan industrial complex was immobilized with polysulfone (PS) to fabricate PS-FZ beads. The prepared PS-FZ beads were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The optimum ratio for preparing PS-FZ beads was 1 g of PS to 2 g of FZ. The removal efficiencies of Sr and Cu ions by the PS-FZ beads increased as the solution pH increased and nearly reached a plateau at pH 4. A pseudo-second-order model morel fit the adsorption kinetics of both ions by the PS-FZ beads better than a pseudo-first-order model. The Langmuir isotherm model fit the equilibrium data well. The maximum adsorption capacities calculated from the Langmuir isotherm model were 46.73 mg/g and 62.54 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as free energy (${\Delta}G^{\circ}$), enthalpy (${\Delta}H^{\circ}$) and entropy (${\Delta}S^{\circ}$) were determined. The results implied that the prepared PS-FZ beads could be interesting an alternative material for Sr and Cu ion removal.

Separation and Simulation for Carbon Dioxide from Flaring Gas Using Polysulfone Hollow Fiber Membrane (폴리술폰 중공사막을 이용한 Flaring Gas에서의 이산화탄소 분리 및 전산모사)

  • Lim, Joo Hwan;Lee, Chung Seop;Kim, Hack Eun;Bae, Myong Won;Mo, Yong Gi;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.99-106
    • /
    • 2015
  • Polysulfone (PSF) hollow fiber membrane was prepared to separate $CO_2$ from the flaring gas. Fabricated PSF membrane system was fulfilled under 1 stage, 2 stage membrane process and simulation in order to confirm the operating condition for 99% of $CH_4$ and 1% of $CO_2$ concentration. Also, $25Nm^3/h$ bench scale $CO_2$ separation membrane system was operated under 1% of $CO_2$ concentration during 100 hr, and $CH_4$ recovery ratio was 98%.

Preparation and Characterization of PSF Membranes by Phosphoric Acid and 2-Butoxyethanol (인산 및 2-부톡시에탄올 첨가에 의한 PSF 고분자 분리막의 제조 및 특성)

  • Kim, Nowon
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.178-190
    • /
    • 2012
  • Flat sheet membranes were prepared with polysulfone (PSF) by an immersion precipitation phase inversion method. Membranes were prepared with PSF/N-methylpyrrolidone (NMP)/polyvinylpyrrolidone (PVP)/phosphoric acid casting solution and water coagulant. By using the successive process of the vapor-induced phase inversion (VIPS) followed by the nonsolvent-induced phase inversion (NIPS), the effect of phosphoric acid addition to casting solution on morphology and permeability of membrane was studied. The mean pore size, the porosity, and the water flux of membranes were increased by the addition of small amount of phosphoric acid. Furthermore, the morphology of the prepared membranes were changed from a dense sponge-like structure to highly enhanced asymmetric structure. PSF/NMP/PVP/phosphoric acid/2-butoxyethanol (BE) casting solution were prepared and cast the successive VIPS-NIPS process with same experimental condition. Due to the addition of BE to casting solution, the mean pore size and almost 0.1 ${\mu}m$ and the water flux increased about 10 to 12 $L/cm^2{\cdot}min{\cdot}bar$.

Racemic and enantiomeric effect of tartaric acid on the hydrophilicity of polysulfone membrane

  • Sharma, Nilay;Purkait, Mihir Kumar
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.257-275
    • /
    • 2016
  • The enantiomeric and racemic effects of tartaric acid (TA) on the properties of polysulfone (PSn) ultrafiltration membranes were studied in terms of morphology and hydrophilicity (HPCT) of membrane. Asymmetric membranes were prepared by direct blending of polyvinyl pyrrolidone (PVP) with D-TA and DL-TA in membrane casting solution. FTIR analysis was done for the confirmation of the reaction of PVP and TA in blended membranes and plain PSn membranes. Scanning electron microscope (SEM), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM) were used for analyzing the morphology and structure of the resulting membranes. The membranes were characterized in terms of pure water flux (PWF), hydraulic permeability and HPCT. PWF increased from $52L/m^2h$ to $79.9L/m^2h$ for plain and D-TA containing PSn membrane, respectively. Water contact angle also found to be decreased from $68^{\circ}$ to $55^{\circ}$. In Additionally, permeation and rejection behavior of prepared membranes was studied by bovine serum albumin (BSA) solution. A considerable increase in BSA flux (from $19.1L/m^2h$ for plain membrane to $32.1L/m^2h$ for D-TA containing membrane) was observed. FESEM images affirm that the pore size of the membranes decreases and the membrane permeability increases from 0.16 to 0.32 by the addition of D-TA in the membrane. D-TA increases the HPCT whereas; DL-TA decreases the HPCT of PSn membrane. PVP (average molecular weight of 40000 Da) with D-TA (1 wt%) gave best performance among all the membranes for each parameter.

Hypochlorite Production by Using SPEEK/APSf and SPEEK/APEI Bipolar Membranes Modified by the Direct Fluorination (직접 불소화에 의해 표면 개질된 SPEEK/APSf, SPEEK/APEI 바이폴라막을 이용한 차아염소산나트륨 생성)

  • Kim, Ka young;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.447-455
    • /
    • 2015
  • In this study, Polysulfone (PSf) and polyetherimide (PEI) as the anion exchange polymers were aminated in the different ratio whereas the polyether ether ketone (PEEK) as the cation exchange polymer was sulfonated. The bipolar membranes of SPEEK (sulfonated PEEK)/APSf (aminated PSf) and SPEEK/APEI (aminated PEI) were prepared by the double-casting method. The surfaces of bipolar membranes were fluorinated in accordance with the amination ratio and applied to produce the hypochlorite. As the amination increased, the hypochlorite concentration is also increased. Typically, for SPEEK/APSf 3 : 1 membrane, the produced hypochlorite concentration was 61.0 ppm and its durability was 220 min for the non-fluorinated membrane while for the fluorinated membrane, the concentration of 58.6 ppm and its durability lasted 570 min. Also for SPEEK/APEI 3 : 1 membrane, the hypochlorite concentrations of 60.1 ppm and 58.3 ppm for before- and after-fluorination, respectively were observed whereas the durability was remarkably developed from 150 min to 440 min. Therefore, the surface fluorination takes an important role for the development of the membrane durability.

The Cesium Removal Using a Polysulfone Carrier Containing Nitric Acid-treated Bamboo Charcoal (질산으로 표면처리한 대나무 활성탄을 첨가한 폴리술폰 담체의 세슘제거 효율 규명)

  • Rahayu, Ni Wayan Sukma Taraning;Kim, Seonhee;Tak, Hyunji;Kim, Kyeongtae;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • The cesium (Cs) sorption characteristics of a bead-type polysulfone carrier contained HNO3-treated bamboo charcoal (3 - 5 mm in diameter) in water system were investigated and its Cs removal efficiency as an adsorbent from water was also identified by various laboratory experiments. From the results of batch sorption experiments, the bead-type polysulfone carrier with only 5% HNO3-treated bamboo charcoal (P-5NBC) represented the high Cs removal efficiency of 57.8% for 1 hour sorption time. The Cs removal efficiency of P-5NBC in water after 24 hours reaction maintained > 69% at a wide range of pH and temperature conditions, attesting to its applicability under various water systems. Batch sorption experiments were repeated for P-5NBC coated with two cultivated microorganisms (Pseudomonas fluorescens and Bacillus drentensis), which were typical indigenous species inhabited in soil and groundwater. The Cs removal efficiency for two microorganisms coated polysulfone carrier (BP-5NBC) additionally increased by 19% and 18%, respectively, compared to that of only P-5NBC without microorganisms coated. The average Cs desorption rate of P-5NBC for 24 h was lower than 16%, showing the Cs was stably attached on HNO3-treated bamboo charcoal in so much as its long-term use. The maximum Cs sorption capacity (qm) of P-5NBC calculated from the Langmuir isotherm model study was 60.9 mg/g, which was much higher than those of other adsorbents from previous studies for 1 h sorption time. The results of continuous column experiments showed that the P-5NBC coated with microorganisms packed in the column maintained > 80% of the Cs removal efficiency during 100 pore volumes flushing. It suggested that only 14.7 g of P-5NBC (only 0.75 g of HNO3 treated bamboo charcoal included) can successfully clean-up 7.2 L of Cs contaminated water (the initial Cs concentration: 1 mg/L; the effluent concentration: < 0.2 mg/L). The present results suggested that the Cs contaminated water can be successfully cleaned up by using a small amount of the polysulfone carrier with HNO3-treated bamboo charcoal.