• 제목/요약/키워드: polynomial stability

Search Result 116, Processing Time 0.027 seconds

Model and Heuristics for the Heterogeneous Fixed Fleet Vehicle Routing Problem with Pick-Up and Delivery

  • Zhai, Shuai;Mao, Chao
    • Journal of Distribution Science
    • /
    • v.10 no.12
    • /
    • pp.19-24
    • /
    • 2012
  • Purpose - This paper discusses the heterogeneous fixed fleet vehicle routing problem with pick-up and delivery (HFFVRPPD), for vehicles with different capacities, fixed costs, and travel costs. Research Design, data, methodology - This paper made nine assumptions for establishing a mathematical model to describe HFFVRPPD. It established a practical mathematical model, and because of the non-deterministic polynomial-time hard (NP-hard), improved the traditional simulated annealing algorithm and tested a new algorithm using a certain scale model. Result - We calculated the minimum cost of the heterogeneous fixed fleet vehicle routing problem (HFFVRP) with a single task and, on comparing the results with the actual HFFVRP for the single task alone, observed that the total cost of HFFVRPPD reduced significantly by 46.7%. The results showed that the new algorithm provides better solutions and stability. Conclusions - This paper, by comparing the HFFVRP and HFFVRPPD results, highlights certain advantages of using HFFVRPPD in physical distribution enterprises, such as saving distribution vehicles, reducing logistics cost, and raising economic benefits.

  • PDF

A study on the Nonlinear Normal Mode Vibration Using Adelphic Integral

  • Huinam Rhee;Kim, Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1922-1927
    • /
    • 2003
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

Damping Force Modeling of Shock Absorbers Using Hyperbolic tangent (Hyperbolic tangent를 이용한 충격 흡수기 감쇠력 모델 연구)

  • 서정원;한형석;노규석;허승진;김기훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1479-1482
    • /
    • 2003
  • The shock absorber is a part having a direct influence on the ride comfort, stability and dynamic load prediction of a vehicle. Thus, a rationally modeled shock absorber should be required in the dynamic analysis of vehicles. This thesis presents a modified model, based on Worden's hyperbolic tangent function, in order to fit experimental data on the velocity-damping force of a shock absorber. The hyperbolic tangent function correctly indicates the characteristics of a shock absorber. and has the advantage of containing physical causality. To evaluate the method, comparative evaluations of the linear model. the 5th polynomial model and Worden's model were carried out. The function presented in this paper is not only simple but also makes it possible to estimate the function coefficients easily and visually. In addition, it has the advantage of containing physical causality. Lastly, it effectively models the damping force of a shock absorber.

  • PDF

A Novel Approach to the Design of Discrete Adative Pole Assignment Controller with Integral Action (적분기를 갖는 직접 적응 극 배치 제어기의 새로운 설계 기법)

  • Kim, Jong-Hwan;Lee, Ju-Jang;Kim, Tai-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.60-63
    • /
    • 1990
  • This note presents a direct adaptive pole assignment control for general discrete, linear, time-invariant, nonmimum phase system.Controller parameters are estimated from the recursive least-squares algorithm, and some additional auxiliary parameters are obtained from aset of recursive equations based on a certain polynomial identity which is derived from the pole assignment equation and the Bezout identity. This scheme increase the numerical stability of the auxiliary parameters, and guarantees local convergence without any extra conditions for the external input. The effectiveness of the proposed scheme is demonstrated by the computer simulation.

  • PDF

Method of Numerical Simulation by Using the Local Harmonic Functions in the Cylindrical Coordinates (국소적 조화함수를 사용한 원통좌표계에서의 유동 해석)

  • Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.300-305
    • /
    • 2007
  • Many practical flow problems are defined with the circular boundary. Fluid flows within a circular boundary are however susceptible to a singularity problem when the cylindrical coordinates are employed. To remove this singularity a method has been developed in this study which uses the local harmonic functions in discretization of derivatives as well as interpolation. This paper describes the basic reason for introducing the harmonic functions and the overall numerical methods. The numerical methods are evaluated in terms of the accuracy and the stability. The Lamb-dipole flow is selected as a test flow. We will see that the harmonic-function method indeed gives more accurate solutions than the conventional methods in which the polynomial functions are utilized.

Thermal buckling of functionally graded plates using a n-order four variable refined theory

  • Abdelhak, Z.;Hadji, L.;Daouadji, T.H.;Bedia, E.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.31-44
    • /
    • 2015
  • This paper presents a simple n-order four variable refined theory for buckling analysis of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and eliminates the shear stresses at the top and bottom surfaces. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present n-order refined theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

Investigation on the Automatic Tool Mesh Generatio for Sheet Metal Stamping Analysis (박판성형해석을 위한 자동 툴 격자 생성에 관한 연구)

  • 유동진
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.140-151
    • /
    • 2000
  • The finite element mesh approach for tool surface description is applied effectively to analyze sheet metal stamping processes. To improve the mesh quality and the stability of the mesh generation process, a gybrid method based on the grid approach and the Delaunay triangulation is proposed in the present work. In the present study, a general method for the mathematical description of arbitrarily shaped tool surface is proposed by introducing the parametric surface approach. A polynomial function employed to describe the base parametric surface and the boundary curves are defined to describe arbitrary three-dimensional trimmed surfaces. To verify the validity of the proposed method, automatic mesh generation is carried out for some shosen complicated parts including actual automotive panel.

  • PDF

Optimal Trajectory Generation for Walking Up a Staircase of a Biped Robot Using Genetic Algorithm (유전 알고리듬을 이용한 이족 보행 로봇의 계단 오르기 최적 보행 궤적 생성)

  • Kim, Eun-Su;Kim, Man-Seak;Kim, Jong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.373-381
    • /
    • 2009
  • In this paper, a humanoid robot is simulated and implemented to walk up a staircase using the blending polynomial and genetic algorithm. Using recently developed kinematics for a biped robot, four schemes for walking up a staircase are newly proposed and simulated separately. For the two schemes of landing a swaying leg on the upper stair, the joint trajectories of seven motors are particularly optimized to generate an energy-minimal motion with the guarantee of walking stability. The proposed scheme of walking upstair is validated by an experiment with a small humanoid robot.

Multi-objective Optimization of Lower Control Arm Considering the Stability for Weight Reduction (경량화에 대한 안전성을 고려한 로우컨트롤암의 다목적 최적설계)

  • 이동화;박영철;허선철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.94-101
    • /
    • 2003
  • Recently, miniaturization and weight reduction is getting more attention due to various benefits in automotive components design. It is a trend that the design of experiment(DOE) and statical design method are frequently used for optimization. In this research, the safety of lower control arm is evaluated according to its material change form S45C to A16061 for the reduction of arm's weight. The variance analysis on the basis of structure analysis and DOE is applied to the lower control m. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering mass, stress and deflection.

Linear interrogation of fiber Bragg grating sensor array using a Etalon filter (에탈론 필터를 이용한 광섬유격자 센서의 선형 복조)

  • Jin, Zhong-Xie;Song, Min-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.74-77
    • /
    • 2006
  • A scanned Fabry-Perot(F-P) filter and a Multi-Channel Wavelength Locker(MCWL) were used to interrogate fiber Bragg grating sensor array. When the F-P filter scans over the MCWL which works as a multi-reference the temporal peaks profiles correspond to the locking wavelengths. To solve the linearity, stability, and accuracy problems caused by the nonlinear response of F-P filter, a polynomial fitting algerian was used to calculate the relationship between the peak locations and the wavelengths in all the scanning range. Then from the reflected peaks locations and the best fitting line, the Bragg wavelengths can be obtained. The measurement linearity was greatly enhanced with wavelength resolution of about 4 pm in 10Hz scanning frequency.

  • PDF