• Title/Summary/Keyword: polynomial numerical index

Search Result 14, Processing Time 0.019 seconds

Residual capacity assessment of in-service concrete box-girder bridges considering traffic growth and structural deterioration

  • Yuanyuan Liu;Junyong Zhou;Jianxu Su;Junping Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.531-543
    • /
    • 2023
  • The existing concrete bridges are time-varying working systems, where the maintenance strategy should be planned according to the time-varying performance of the bridge. This work proposes a time-dependent residual capacity assessment procedure, which considers the non-stationary bridge load effects under growing traffic and non-stationary structural deterioration owing to material degradations. Lifetime bridge load effects under traffic growth are predicated by the non-stationary peaks-over-threshold (POT) method using time-dependent generalized Pareto distribution (GPD) models. The non-stationary structural resistance owing to material degradation is modeled by incorporating the Gamma deterioration process and field inspection data. A three-span continuous box-girder bridge is illustrated as an example to demonstrate the application of the proposed procedure, and the time-varying reliability indexes of the bridge girder are calculated. The accuracy of the proposed non-stationary POT method is verified through numerical examples, where the shape parameter of the time-varying GPD model is constant but the threshold and scale parameters are polynomial functions increasing with time. The case study illustrates that the residual flexural capacities show a degradation trend from a slow decrease to an accelerated decrease under traffic growth and material degradation. The reliability index for the mid-span cross-section reduces from 4.91 to 4.55 after being in service for 100 years, and the value is from 4.96 to 4.75 for the mid-support cross-section. The studied bridge shows no safety risk under traffic growth and structural deterioration owing to its high design safety reserve. However, applying the proposed numerical approach to analyze the degradation of residual bearing capacity for bridge structures with low safety reserves is of great significance for management and maintenance.

Numerical analyses using CFD on the pressure losses of the grout flow with variation of joint roughness and grout features (전산유동역학을 이용한 절리 거칠기 및 주입재 특성에 따른 그라우트 주입 시 압력 손실 해석)

  • Sagong, Myung;Ryu, Sung-ha
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.989-1002
    • /
    • 2018
  • Grouting for the rock joint is to strengthen the rock strata by infiltrating cement grout materials into the rock joints. Grouting is one of a field of study which is difficult to develop deterministic and quantitative design approach because of multiphase behaviors of grout materials and 3 dimensional features of rock joints. Therefore, GIN (Grouting Intensity Number) can be a good index with appropriate monitoring of pressure and volume of grout. In this paper, we investigate the effects of joint roughness (JRC) and rheology of cement material during the infiltration of cement grout material into rock joint through CFD (computational fluid dynamics) analyses. With rough joint surface and increase of WC ratio, the frictional resistance during the grouting increases. The results have been summarized with polynomial correlations.

Reduced Order Modeling of Marine Engine Status by Principal Component Analysis (주성분 분석을 통한 선박 기관 상태의 차수 축소 모델링)

  • Seungbeom Lee;Jeonghwa Seo;Dong-Hwan Kim;Sangmin Han;Kwanwoo Kim;Sungwook Chung;Byeongwoo Yoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.8-18
    • /
    • 2024
  • The present study concerns reduced order modeling of a marine diesel engine, which can be used for outlier detection in status monitoring and carbon intensity index calculation. Principal Component Analysis (PCA) is introduced for the reduced order modeling, focusing on the feasibility of detecting and treating nonlinear variables. By cross-correlation, it is found that there are seven non-linear data channels among 23 data channels, i.e., fuel mode, exhaust gas temperature after the turbocharger, and cylinder coolant temperatures. The dataset is handled so that the mean is located at the nominal continuous rating. Polynomial presentation of the dataset is also applied to reflect the linearity between the engine speed and other channels. The first principal mode shows strong effects of linearity of the most data channels to show the linearity of the system. The non-linear variables are effectively explained by other modes. second mode concerns the temperature of the cylinder cooling water, which shows small correlation with other variables. The third and fourth modes correlates the fuel mode and turbocharger exhaust gas temperature, which have inferior linearity to other channels. PCA is proven to be applicable to data given in binary type of fuel mode selection, as well as numerical type data.

Design of Multi-FPNN Model Using Clustering and Genetic Algorithms and Its Application to Nonlinear Process Systems (HCM 클러스처링과 유전자 알고리즘을 이용한 다중 FPNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;안태천
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.343-350
    • /
    • 2000
  • In this paper, we propose the Multi-FPNN(Fuzzy Polynomial Neural Networks) model based on FNN and PNN(Polyomial Neural Networks) for optimal system identifacation. Here FNN structure is designed using fuzzy input space divided by each separated input variable, and urilized both in order to get better output performace. Each node of PNN structure based on GMDH(Group Method of Data handing) method uses two types of high-order polynomials such as linearane and quadratic, and the input of that node uses three kinds of multi-variable inputs such as linear and quadratic, and the input of that node and Genetic Algorithms(GAs) to identify both the structure and the prepocessing of parameters of a Multi-FPNN model. Here, HCM clustering method, which is carried out for data preproessing of process system, is utilized to determine the structure method, which is carried out for data preprocessing of process system, is utilized to determance index with a weighting factor is used to according to the divisions of input-output space. A aggregate performance inddex with a wegihting factor is used to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of this aggregate abjective function which it is acailable and effective to design to design and optimal Multi-FPNN model. The study is illustrated with the aid of two representative numerical examples and the aggregate performance index related to the approximation and generalization abilities of the model is evaluated and discussed.

  • PDF