• 제목/요약/키워드: polynomial neural network

검색결과 174건 처리시간 0.029초

퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화 (The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization)

  • 백진열;박병준;오성권
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

퍼지추론규칙과 PNN 구조를 융합한 FPNN 알고리즘 (The FPNN Algorithm combined with fuzzy inference rules and PNN structure)

  • 박호성;박병준;안태천;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2856-2858
    • /
    • 1999
  • In this paper, the FPNN(Fuzzy Polynomial Neural Networks) algorithm with multi-layer fuzzy inference structure is proposed for the model identification of a complex nonlinear system. The FPNN structure is generated from the mutual combination of PNN (Polynomial Neural Network) structure and fuzzy inference method. The PNN extended from the GMDH(Group Method of Data Handling) uses several types of polynomials such as linear, quadratic and modifled quadratic besides the biquadratic polynomial used in the GMDH. In the fuzzy inference method, simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used Each node of the FPNN is defined as a fuzzy rule and its structure is a kind of fuzzy-neural networks. Gas furnace data used to evaluate the performance of our proposed model.

  • PDF

주행 오차 보정을 통한 장애물 극복 신경망 제어기 설계 (Design of a Croos-obstacle Neural network Controller using running error calibration)

  • 임신택;이필복;정길도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.372-374
    • /
    • 2009
  • In this research, an obstacle avoidance method is proposed. The common usage of a robot is indoor and the obstacles to the indoor robot is studied. The accurate detection of direction after overcoming the obstacles is necessary for performance of autonomous navigation and mission project. The sensors such as Laser, Ultrasound, PSD can be used to measure the obstacles. In this research, a PSD sensor is used to detect obstacles. It detects the height and width of obstacles located on the floor. Before measuring the obstacles, a calibration of the sensor was done and it produced a better accuracy. We have plotted an error graph using data obtained from the repeated experiments. The graph is fitted to a polynomial curve. The polynomial equation is used for the robot navigation. And in this research, a model of the error of the direction of the robot after overcoming obstacles was obtained also. The prototype of the obstacle and the error of the direction after overcoming the obstacles are modelled using a neural networks. The input of the neural network composed with the height of the obstacles, the speed of robot, the direction of wheels and the error of the direction. To implement the suggested algorithm, we set up a robot which is operated by a notebook computer. Experiment showed the suggested algorithm performed well.

  • PDF

Exploiting Neural Network for Temporal Multi-variate Air Quality and Pollutant Prediction

  • Khan, Muneeb A.;Kim, Hyun-chul;Park, Heemin
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.440-449
    • /
    • 2022
  • In recent years, the air pollution and Air Quality Index (AQI) has been a pivotal point for researchers due to its effect on human health. Various research has been done in predicting the AQI but most of these studies, either lack dense temporal data or cover one or two air pollutant elements. In this paper, a hybrid Convolutional Neural approach integrated with recurrent neural network architecture (CNN-LSTM), is presented to find air pollution inference using a multivariate air pollutant elements dataset. The aim of this research is to design a robust and real-time air pollutant forecasting system by exploiting a neural network. The proposed approach is implemented on a 24-month dataset from Seoul, Republic of Korea. The predicted results are cross-validated with the real dataset and compared with the state-of-the-art techniques to evaluate its robustness and performance. The proposed model outperforms SVM, SVM-Polynomial, ANN, and RF models with 60.17%, 68.99%, 14.6%, and 6.29%, respectively. The model performs SVM and SVM-Polynomial in predicting O3 by 78.04% and 83.79%, respectively. Overall performance of the model is measured in terms of Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE).

위치 변환 패턴 인식을 위한 다항식 고차 뉴럴네트워크 (Polynomial Higher Order Neural Network for Shift-invariant Pattern Recognition)

  • 정종수;홍성찬
    • 한국정보처리학회논문지
    • /
    • 제4권12호
    • /
    • pp.3063-3068
    • /
    • 1997
  • 일반적인 역전파(Back Propagation)의 알고리즘을 다층 다항식 고차 뉴럴네트워크에 적용하여 위치 변환 패턴에 있어 정확한 인식을 할 수 있도록 네트워크의 구조를 개선했다. 본 논문의 목적은 다층 다항식 고차 뉴럴네트워크를 이용하여 여러 가지 패턴 인식이 가능한 이유를 자세히 논한다. 실제 예로는 일정한 문자 인식의 예제로 변형된 영문자 T-C 패턴을 가지고 실험했으며, 네트워크의 일반성(Generalization)을 측정하기 위해서는 거울반사 대칭(Mirror Symmetry)문제를 시뮬레이션 했다. 그 결과 종래의 모델보다 기술적인 우수성을 확인 할 수가 있었다. 본 연구가 제안한 방식에 의한 위치 변환된 T-C 패턴에 대하여서는 90%의 인식율을 얻을 수 있었으며, 일반성의 실험에서 거울반사 대칭(Mirror Symmetry)에 대한 인식율은 70%를 얻었다. 이 실험결과는 종래의 모델에서는 구하기 어려운 인식율이며 기존 연구와 비교한 결과 본 제안 방식의 기술적 우위성을 확연히 판단 할 수 있다.

  • PDF

공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석 (K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies)

  • 김욱동;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

다항계수를 이용한 얼굴 인식 시스템 (The Recognition System of Face using Polynomial Coefficients)

  • 신창훈;김윤호;류광렬;이주신
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.244-247
    • /
    • 1999
  • 본 논문에서는 영상의 전체의 특징을 포함하는 다항계수를 추출하고, 신경회로망을 이용하여 얼굴영상을 인식하는 다항계수를 이용한 얼굴 영상 인식 시스템을 제안한다 시스템은 먼저, 입력 영상의 특징 파라미터로 사용되는 다항계수의 수를 줄이기 위하여 웨이브렛 변환을 이용하여 영상의 크기를 1/4씩 줄였다. 3차 웨이브렛 변환된 저주파 계수 행렬로부터 저주파 계수 행렬에 대한 다항계수를 추출하였다. 추출된 각 저주파 계수 행렬에 대한 다항계수들을 신경회로망의 입력벡터로 사용하기 위하여 정규화 과정을 거친다. 정규화된 다항계수를 역전파 알고리즘을 가진 신경회로망의 입력 백터로 사용하여 얼굴영상을 인식하였다.

  • PDF

The solution of single-variable minimization using neural network

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2528-2530
    • /
    • 2004
  • Neural network minimization problems are often conditioned and in this contribution way to handle this will be discussed. It is shown that a better conditioned minimization problem can be obtained if the problem is separated with respect to the linear parameters. This will increase the convergence speed of the minimization. One of the most powerful uses of neural networks is in function approximation(curve fitting)[1]. A main characteristic of this solution is that function (f) to be approximated is given not explicitly but implicitly through a set of input-output pairs, named as training set, that can be easily obtained from calibration data of the measurement system. In this context, the usage of Neural Network(NN) techniques for modeling the systems behavior can provide lower interpolation errors when compared with classical methods like polynomial interpolation. This paper solve of single-variable minimization using neural network.

  • PDF

GA 기반 자기구성 다항식 뉴럴 네트워크의 최적화를 위한 새로운 설계 방법 (A New Design Approach for Optimization of GA-based SOPNN)

  • 박호성;박병준;박건준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2627-2629
    • /
    • 2003
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN). The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized networks, and to be much more flexible and preferable neural network than the conventional SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented with using nonlinear system data.

  • PDF

퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석 (Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier)

  • 김은후;오성권;김현기
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.